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Christofer Alcaraz1

1Facultad de Ingenieŕıa Electromecánica, Universidad de Colima, Carretera
Manzanillo-Cihuatlán Km. 20, C.P. 28860, Manzanillo, Colima, México.
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Resumen: La orientación y posición de un veh́ıcu-
lo es un problema fundamental en la robótica móvil
aplicada. Ingenieros e investigadores han propuesto
muchos métodos para resolverlo. Sin embargo, la ma-
yoŕıa de las propuestas permanecen en estado experi-
mental y ninguna se ha establecido como el estándar
de referencia. Además, existen sistemas especializa-
dos en posicionamiento que son costosos y poco ac-
cesibles. En este trabajo, proponemos un sistema de
posicionamiento con un conjunto de cámaras conven-
cionales (webcams). Evaluamos la calidad de los re-
sultados usando equipamiento accesible para un ro-
bot móvil omnidireccional.
Palabras clave: Visión por computadora, Robóti-
ca móvil, triangulación, Posicionamiento, distorted
pinhole model, segmentación por color.
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1. Introducción

El conocimiento de la posición y orientación de los
veh́ıculos es fundamental en la robótica móvil apli-
cada. Existen muchas técnicas y sensores disponibles
actualmente. Sin embargo, la estimación de posición
en robótica móvil sigue siendo un problema abier-
to en la comunidad cient́ıfica. Se están investigando
alternativas para abordar este problema. La diversi-
dad de métodos y requerimientos dificulta la compa-
ración objetiva entre metodoloǵıas diferentes [1]. La
odometŕıa es una técnica de estimación de posición
relativa, ofrece un bajo costo y una precisión acep-
table en peŕıodos cortos. Sin embargo, la odometŕıa
presenta altos niveles de error en peŕıodos largos. Los
sistemas de visión especializados, como OptiTrack,
ofrecen alta precisión, también garantizan robustez
en cualquier peŕıodo de operación. Desafortunada-
mente, estos sistemas son poco accesibles por su alto
costo. En este proyecto de verano, construimos un
sistema de visión de bajo costo, utilizamos cuatro
cámaras convencionales (webcams) para el posicio-
namiento de un robot móvil.
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2. Metodoloǵıa

2.1. Corrección de perspectiva

Un aspecto clave de los sistemas de visión es la
corrección de perspectiva. Esto implica transformar
imágenes de ṕıxeles desde el plano interno de la cáma-
ra al plano de referencia en el mundo tridimensional
donde se usarán. Para corregir la perspectiva, se ge-
neran homograf́ıas desde el plano imagen.
Para crear el algoritmo que genera matrices ho-

mograf́ıa, se deben entender conceptos de visión por
computadora. La Figura 1 muestra un diagrama de
un sistema de visión. El algoritmo busca encontrar la
relación entre los puntos del plano imagen y los del
plano de referencia [2].

Figura 1: Diagrama de un sistema de visión con 1
cámara.

2.2. Coordenadas Homogéneas

Hay varias formas de representar puntos en el es-
pacio 3D, como las coordenadas cartesianas, polares
y ángulos directores. En los sistemas de visión, las
coordenadas homogéneas son útiles. Esto se debe a
que las transformaciones en este plano son lineales, a
diferencia de las coordenadas cartesianas.
En coordenadas cartesianas, los puntos en 1 dimen-

sión se representan con un vector de 1 componente.
Lo mismo ocurre para 2 y 3 dimensiones, donde cada

Figura 2: Representación de un punto en el espacio
de n dimensiones con coordenadas cartesianas.

Figura 3: Representación de un punto en el espacio
de n dimensiones con coordenadas homogéneas.

componente indica una dimensión, como se muestra
en la figura 2.

En las coordenadas homogéneas, se añade una di-
mensión extra al vector. Esta dimensión se representa
con un valor al final del vector, como se muestra en la
figura 3. La distancia del punto al origen en esta nue-
va dimensión se llama escala. La escala indica cómo
está representada la coordenada.

Se puede definir el operadorHs. Este operador con-
vierte un punto P a coordenadas homogéneas. Lo ha-
ce añadiendo una dimensión extra con valor s. El va-
lor s puede ser cualquier número real.

P =


x1

x2

...
xn

 , Hs[P ] =


x1

...
xn

s

 (1)

Este operador considera dos casos particulares. El
primer caso ocurre cuando la escala es igual a uno.
En este caso, se puede omitir la escala en el operador
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Figura 4: Representación gráfica de una propiedad
fundamental de las coordenadas homogéneas, donde
la recta que intercepta al punto en el plano se puede
multiplicar por cualquier escalar λ

H. El segundo caso sucede cuando la escala es cero.
Aqúı, el resultado no afecta la dirección ni la norma
del vector P . Esto permite describir la ubicación de
puntos en el infinito.

H[P ] =


x1

...
xn

1

 , H0[P ] =


x1

...
xn

0

 (2)

Una propiedad interesante del operador H es que
una recta generada es invariante al producto de un
escalar λ. Supongamos que un punto p = [x1, x2]

T

representa la intersección de la recta L con el plano
ubicado en zp, como se muestra en la figura 4. Solo
nos interesa la intersección de la recta con el plano.
Por lo tanto, esta recta puede multiplicarse por un
factor arbitrario λ sin afectar el punto P . Gracias a
esta propiedad, podemos concluir que en el espacio
de coordenadas homogéneas existe una infinidad de
vectores que representan el mismo punto en el espacio
[3].

Y = λHs[P ] (3)

El operador de coordenadas homogéneas inverso
tiene como objetivo recuperar el punto dado a partir

de sus coordenadas homogéneas. Este se define con
la notación H−1

s , donde s puede ser representado por
cualquier número real. Por ejemplo, si consideramos
un vector de dimensiones (n + 1), las cuales son las
coordenadas homogéneas de un punto en espacio de
n dimensiones.

Y =
[
y1 · · · yn yn+1

]T
(4)

Al realizar el proceso inverso, el operador H−1
0 [Y ]

recupera los valores del vector excepto el último, es
decir, yn+1.

H−1
0 [Y ] =

[
y1 · · · yn yn+1

]T
(5)

Este operador solo recupera el punto en la escala
0, sin embargo, cuando la escala corresponde a otro
número real arbitrario s, es necesario considerar que
el vector puede estar multiplicado por un escalar λ.
Esto significa que:

Y =


y1
...
yn

yn+1

 =


λHs[x1]

...
λHs[xn]

λs

 = λHs[X] (6)

En este caso, X representa el punto de coordena-
das cartesianas que queremos recuperar. Al observar
la ecuación anterior, podemos ver que es necesario eli-
minar el valor escalar λ para obtener las componentes
del punto Hs[X]. Este valor se puede determinar al
observar el último elemento de las coordenadas ho-
mogéneas del punto. Este valor es importante para el
operador de coordenadas homogéneas inversas, por lo
que se define como S. Por lo tanto, se tiene que:

S[Y ] = yn+1 = λs (7)

Si se conoce la escala S y la última entrada de
un vector (n+1)-dimensional, es posible eliminar el
factor λ a partir de la siguiente ecuación:

Hs[X] =
s

S[Y ]
=

s

λs


λx1

...
λxn

λs

 =


x1

...
xn

s

 (8)
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Finalmente, para recuperar las coordenadas carte-
sianas queda elimiar el último elemento del vector,
esto se puede realizar a través del operador de coor-
denadas homogéneas inverso (H−1

0 ) [3], por lo tanto,
el operador generalizado de coordenadas homogéneas
inverso para cualquier escala queda definido de la si-
guiente manera:

H−1
s [Y ] =

s

S[Y ]
H−1

0 [Y ] (9)

2.3. Procesamiento de imagen

2.3.1. Segmentación de imagen

La segmentación de imágenes implica dividir una
imagen en sus regiones u objetos componentes. La
extensión de esta división vaŕıa según el problema y la
segmentación se completa cuando se áısla el objeto de
interés. Este proceso es uno de los mayores desaf́ıos en
visión por computadora. Actualmente, hay muchos
enfoques para abordarlo [4].
Aunque la segmentación de imágenes en escala de

grises ha sido ampliamente explorada, la segmenta-
ción basada en el color ha ganado relevancia. Esto
se debe a su capacidad para extraer más informa-
ción que las imágenes en blanco y negro. Además, los
avances en la capacidad computacional actual per-
miten implementar más algoritmos en este contexto
[5].

Figura 5: Espacio de color HSV.

Existen diferentes propuestas para la segmentación

por color. Estas pueden clasificarse de la siguien-
te manera: detección de bordes, umbral, umbral de
histograma, región, agrupación de caracteŕısticas, y
métodos basados en redes neuronales. Después de
analizar las diferentes técnicas, se concluyó que la
segmentación por color era la opción más adecuada
por su simplicidad y facilidad de implementación [4].

2.3.2. Modelos de color

Un modelo de color es un enfoque matemático para
representar colores mediante listas ordenadas y fini-
tas de elementos. Cada elemento corresponde a un
componente diferente de color. La interpretación de
estos componentes da como resultado un espacio de
color. Existen varios espacios de color, como RGB,
NTSC, YVbCr, HSV, CMY, entre otros.

El modelo HSV toma su nombre de las iniciales en
inglés de Hue (matiz), Saturation (saturación) y Va-
lue (valor). Es un espacio de color que describe cómo
los humanos perciben el color. El matiz se refiere al
color dominante que ve el ojo humano, es decir, el
tono. La saturación indica la cantidad de luz blanca
mezclada con el matiz y representa la intensidad del
color. El valor muestra la luminosidad o intensidad
del color.

El espacio de color HSV se puede visualizar como
un cono geométrico. La dimensión angular representa
el matiz, comenzando con el rojo en 0 grados, pasan-
do al verde a 120 grados, al azul a 240 grados, y vol-
viendo al rojo a 360 grados. La distancia desde el eje
central muestra la saturación, que vaŕıa de 0 a 1. El
eje vertical representa el valor, con negro en la parte
inferior (valor 0) y blanco en la parte superior (valor
1). [4]

2.3.3. Centroide de una figura

El centroide de una figura geómetrica regular tiene
una fórmula espećıfica por figura. Sin embargo, en es-
te trabajo emplearemos la fórmula generalizada, que
permite trabajar con figuras irregulares que pueden
incluso rotar, definida como [6]:
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Figura 6: Diferentes modelos de cámaras. (a) Cámara
de lente computesta. (b) Cámara de lente simple. (c)
Cámara pinhole.

x =

∑
(X × PixelV alues)∑

PixelV alues

y =

∑
(Y × PixelV alues)∑

PixelV alues

(10)

2.4. Modelado de cámara

Para analizar un sistema, proceso u objeto en la
realidad, es necesario desarrollar una expresión ma-
temática que lo describa, conocida como modelo. Pa-
ra hacerlo, es crucial comprender cómo funciona el
sistema. En el caso de las cámaras digitales, la ima-
gen se crea a través de un complejo conjunto de lentes
(a). Sin embargo, es posible aproximar este conjun-
to a una cámara con una sola lente simple (b). Este
nuevo modelo comparte las mismas propiedades que
el modelo más complejo. Puede enfocar múltiples ra-
yos de luz de la realidad y mapearlos en el plano de
la imagen (el sensor fotosensible) de manera idéntica.
La aproximación entre modelos se facilita gracias

al propósito espećıfico de la aplicación. No es esen-
cial considerar la capacidad del sistema óptico para
enfocar los rayos de luz de la escena observada. Lo
importante es el mapeo de los rayos de luz entre la
escena y el plano de la imagen. Por lo tanto, este
modelo se puede simplificar aún más. Podemos con-

Figura 7: Proceso de formación de imagen a través
del modelo Pinhole.

siderar el sistema óptico como una caja cerrada con
un agujero por donde entran los rayos de luz (c).

Este modelo, conocido como pinhole, bloquea to-
dos los rayos de luz excepto uno. Esto resulta en una
correspondencia de uno a uno en el plano de la ima-
gen. Los puntos están conectados por una ĺınea que
atraviesa el pinhole.

Al analizar el modelo de la figura 5, se observa que
la proyección en el plano de la imagen está invertida
en el eje X y el eje Y. Para corregir esto, se cambia
la proyección de z = −f a z = +f . En este punto,
ningún eje está invertido y es equivalente a la proyec-
ción principal.

Otra caracteŕıstica importante de este modelo es
que el sistema de coordenadas es estático y está ubi-
cado en el pinhole. Aunque la mayoŕıa de los rayos
sufren una pequeña distorsión, el rayo que pasa por
el origen es paralelo al eje z y no sufre distorsión. Este
eje se conoce como el eje óptico [7].

2.4.1. Homograf́ıas

A menudo, en un sistema de visión, se busca encon-
trar las correspondencias entre un plano en el espacio
tridimensional y el plano de imagen. Esto es un caso
particular de la matriz de la cámara C, ya que los
puntos en el espacio tridimensional deben ser copla-
nares. Esta nueva matriz, que realiza el mapeo en-
tre dos sistemas de coordenadas coplanares, se llama
matriz homograf́ıa y se denota con la letra G. Esta
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Figura 8: Comparación entre la correspondencia de
puntos en el espacio y correspondecia de puntos co-
planares.

matriz mapea los puntos ρ del plano de referencia con
los puntos del plano de imagen µ.

Como se observa en la figura 8, la matriz de ho-
mograf́ıa es muy similar a la matriz de la cámara. La
diferencia principal es que los puntos en el sistema de
referencia de coordenadas están en z = 0. Debido a
esto, la última fila de la matriz de la cámara es 0. Es-
to nos deja con una matriz no singular de tamaño 3 x
3. Por lo tanto, podemos definir la matriz homograf́ıa
a partir de la matriz de la cámara.

G =

g11 g12 g13
g21 g22 g23
g31 g32 g33

 =

ḡ1Tḡ2
T

ḡ3
T

 (11)

De la expresión anterior se puede sustituir en la
ecuación que une las correspondencias.

[
µx

µy

]
=

ḡ1TH[ρ]
ḡ2

TH[ρ]
ḡ2

TH[ρ]

 (12)

Al realizar la operación de las coordenadas ho-
mogéneas inversa, se obtiene[

µx

µy

]
=

1

ḡ3TH[ρ]

[
ḡ1

TH[ρ]
ḡ2

TH[ρ]

]
(13)

Esta expresión se puede igualar a 0, donde se ob-
tiene un sistema de ecuaciones de 2n, donde n es el
número de correspondencias en los dos sistemas de

referencia. Dado el número de incógnitas que se ne-
cesitan para calcular la matriz homograf́ıa G, se ne-
cesitan al menos 4 correspondencias.[

ḡ1
TH[ρ]

ḡ2
TH[ρ]

]
−

[
(ḡ3

TH[ρ])µx

(ḡ3
TH[ρ])µy

]
=

[
0
0

]
(14)

Al despejar la ecuación anterior se puede obtener
el vector que corresponde a las filas de la matriz ho-
mograf́ıa.

[
H[ρ]

T
0T3 −µxH[ρ]

T

0T3 H[ρ]
T −µyH[ρ]

T

]ḡ1Tḡ2
T

ḡ3
T

 = 02 (15)

Este sistema de ecuaciones se busca la solución
mı́nima, sin embargo, tiene la particularidad de que
esta igualado a 0, por lo que una de las soluciones
para el vector de las columndas de la matriz G puede
ser 0, por lo tanto, se utiliza la descomposición en
valores singulares (SVD) de la matriz que acompaña
al vector de incógnitas, es decir

A = UΣV T (16)

Donde U y V son matrices ortogonales y σ es una
matriz diagonal con los valores singualres de A en la
diagonal. Dicha expresión se puede representar de la
siguiente forma.

[
u1 u2 u3

] σ1υ
T
1

σ2υ
T
2

σ3υ
T
3

 (17)

Donde σ1 ≥ σ2 ≥ σ3. Debido a que se busca que
la solución sea mı́nima se puede determinar que la
solución del sistema de ecuaciones se encuentra en la
última columna de la matriz V [7].

2.4.2. Triangulación

La mayoŕıa de los algoritmos de triangulación en
visión por computadora se basan en el modelo de la
cámara pinhole. La forma generalizada de la ecuación
que relaciona un punto en el espacio con el plano
imagen se detemina

µ = H−1[CH[P ]] (18)
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Al tratar de despejar el punto P de la ecuación
anterior se observa que, por propiedades de las coor-
denadas homogéneas, aparece un número real λ, el
cual representa todos los valores por los que atravie-
sa la proyección del punto desde el sistema de coor-
denadas de la cámara, es decir, resulta las siguientes
ecuaciones.

λ1H[µ1] = K1

[
RT

1 −RT
1 t1

] [P
1

]
λ2H[µ2] = K2

[
RT

2 −RT
2 t2

] [P
1

] (19)

Donde C1 = K1[R
T
1 − RT

1 t1]. Al despejar P de las
2 ecuaciones se obtienen las siguientes expresiones

P = t1 + λ1R1K
−1
1 H[µ1]

P = t2 + λ1R2K
−1
2 H[µ2]

(20)

Si sustituimos las expresiones R1K
−1
1 H[µ1] = d1 y

R2K
−1
2 H[µ2] = d2 nos queda el siguientes sistema de

ecuaciones

[
d2 −d2

] [λ1

λ2

]
= t2 − t1 (21)

En el cual podemos obtener los valores de λ1 y λ2.
Por último, la expresión que une los 2 puntos de coor-
denadas µ de las 2 cámaras con un punto en el espacio
tridimensional se define como [8]

p =
t1 + t2 + λ1d1 + λ2d2

2
(22)

2.4.3. Triangulación generalizada

Para realizar la triangulación con m número de
cámaras, es necesario generalizar la expresión descri-
ta anteriormente. Esta técnica se conoce como Me-
dia de puntos con mı́nima dispersión (Mean of Points
with Minimum Dispersion). Para cada dispositivo, se
observa un punto detectado por un rayo de luz. A
menudo, estos rayos son ĺıneas oblicuas debido a la
resolución y los errores de detección.

pi = ti + λibi, i = 1, 2, · · · ,m. (23)

Por lo tanto el punto observado puede ser definido
como una media de puntos pi como

P =
1

m

m∑
i=1

pi =
1

m
(Bl + T1m) (24)

,
donde 1m = [1, 1, · · · , 1]T es un vector de dimen-

sión m × 1 y todos sus valores son 1, B y T son
matrices de dimensión 3×m definidos como

B =
[
b1 b2 · · · bm

]
T =

[
t1 t2 · · · tm

] (25)

y l es un vector de dimensión m × 1 desconocido
dado por

l =
[
λ1 λ2 · · · λm

]T
(26)

Para obtener los valores del vector l se puede de-
terminar a través de la expresión

l = (N − 1

m
BTB)−1(

1

m
BTT1m − h) (27)

donde N es una matriz diagonal m×m, y h es una
matriz de dimensión m×1 definidos respectivamente
como

N = diag(bT1 b1, b
T
2 b2, · · · , bTmbm),

h =
[
tT1 b! tT2 b2 · · · tTmbm

]T (28)

Al resolver la ecuación (27), el vector resultante l
se substituye en la ecuación (24), para obtener las
coordenadas del punto observado P en el espacio [8].

3. Resultados

3.1. Calibración de cámaras

Se realizó la calibración de cada una de las 4 cáma-
ras. Se tomaron entre 13 y 17 fotos por cámara a una
cuadŕıcula (patrón de calibración), como se muestra
en la Figura 9(Izda). Después de calibrar la cámara,
se capturó una imagen extra para calcular la posición
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Figura 9: (Izda.) Imagen tomada para la obtención de los parámetros intŕınseco y extŕınsecos de la cámara.
(Centro) Imagen de referencia utilizada para ubicar la cámara en el sistema de coordenadas de referencia.
(Dcha.) Imagen procesada con la corrección de perspectiva.

Figura 10: (Izda.) Cono caracteŕıstico del Espacio HSV. (Centro) Imagen segmentada por detección de color
morado. (Dcha.) Centroide del objeto morado detectado en la imagen.

de la cámara respecto al sistema de referencia, como
se muestra en la figura 9(Centro). Este último proceso
se realizó usando cuatro puntos marcados en el suelo
para obtener la homograf́ıa asociada y de ella calcu-
lar la ubicar y orientación de la cámara. Más aún, la
homograf́ıa obtenida permite corregir la perspectiva
de la imagen original, como se muestra en la Figura
9(Dcha). Este proceso de calibración se repitió para
las cuatro cámaras del sistema propuesto.

3.2. Detección de objetos por color

Para detectar la posición del robot, se utilizaron
distintivos de colores. Los colores tienden a variar
con los cambios de luz exterior y la configuración de
la cámara. Esto se debe a que el color percibido es
subjetivo. Por lo tanto, en lugar de definir un color
exacto, se establece un umbral para permitir cierta
tolerancia ante estos cambios.
En la Figura 9(Centro) se muestra una imagen cap-

turada por una cámara del sistema de visión. En la

Figura 10(Izda) se muestra el cono caracteŕıstico del
modelo HSV. A esta imagen se le aplicó la segmenta-
ción al color morado, dando como resultado la figura
10(Centro).

Después el resultado se transforma en una nueva
imagen, donde los ṕıxeles detectados tienen el valor
de 1, mientras que el resto de los ṕıxeles toman el
valor de 0, esto con la finalidad de ser capaz de cal-
cular de forma más eficiente el centroide del objeto a
través de la ecuación 10. La figura 10(Dcha.) mues-
tra contiene una marca en las coordenadas ṕıxel del
centroide detectado.

3.3. Robot Omnidireccional

Para este sistema se utilizó un robot móvil omnidi-
reccional, al cual se le colocaron 2 distintivos, como
se observa en la figura 12. El distintivo color naran-
ja representa el punto de control del robot, mientras
que el distintivo color rosa se utiliza para calcular la
orientación del robot.
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Figura 11: Detección del robot a través del sistema
de cuatro cámaras propuesto usando distintivos de
color.

Una vez detectado por las 4 cámaras, las coorde-
nadas pixeles se convierten en rayos de dirección, se-
guido del algoritmo de triangulación, en la figura 12
(Arriba) se observa la altura real contra la altura cal-
culada por el sistema de visión, visualizada en el ser-
vidor, la cual esta siendo enviada al control del robot,
figura 12 (Abajo).
La creación de sistemas de posicionamiento me-

diante visión requiere varias etapas. Primero, se debe
ubicar las cámaras. Es necesario saber cuál será el
área de trabajo donde se detectará la posición. Lue-
go, se realiza la calibración, que consiste en obtener
fotograf́ıas útiles. A veces, las fotos tomadas no per-
miten calibrar las cámaras de manera adecuada.
Después, se comprueban las estimaciones. Es nece-

sario verificar las posiciones calculadas por el sistema
de calibración. Este proceso suele ser de prueba y
error, especialmente para principiantes. Por último,
se revisa la ubicación. Una vez completada la calibra-
ción, el sistema queda fijo.
Cuando el sistema de posicionamiento está listo, se

puede usar en cualquier momento. Además, funciona
para otras aplicaciones.

4. Conclusiones

Los sistemas de visión multicámara con cámaras
convencionales son una solución de bajo costo pa-

Figura 12: (Arriba) Distintivo naranja sobre el robot
a una altura de 45.4 mm. (Abajo) Altura de 45.38 mm
obtenida mediante el sistema multicámara propuesto.

ra el posicionamiento de robots móviles. Aunque la
calibración puede ser laboriosa al principio, una vez
calibrado y fijo, el sistema está listo para su uso. Un
sistema de visión como el propuesto puede servir para
otros propósitos, además de mejorar el conocimiento
del entorno del robot.

Por ejemplo, se pueden detectar objetos para usar
en algoritmos de evasión de obstáculos. También es
posible generar un mapa del área de trabajo para
realizar simulaciones y mejorar el entendimiento del
entorno. Además, un mismo sistema de visión puede
ser usado para el posicionamiento de cualquier tipo de
sistema robótico, incluidos brazos robóticos y drones.
Esto ofrece gran flexibilidad para su uso.
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