Sistema multicamara para deteccion de posicion de un robot maévil
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Resumen: La orientacién y posicion de un vehicu-
lo es un problema fundamental en la robdtica mévil
aplicada. Ingenieros e investigadores han propuesto
muchos métodos para resolverlo. Sin embargo, la ma-
yoria de las propuestas permanecen en estado experi-
mental y ninguna se ha establecido como el estandar
de referencia. Ademads, existen sistemas especializa-
dos en posicionamiento que son costosos y poco ac-
cesibles. En este trabajo, proponemos un sistema de
posicionamiento con un conjunto de cdmaras conven-
cionales (webcams). Evaluamos la calidad de los re-
sultados usando equipamiento accesible para un ro-
bot mévil omnidireccional.

Palabras clave: Visién por computadora, Roboti-
ca movil, triangulacién, Posicionamiento, distorted
pinhole model, segmentacién por color.

Indice

1. Introduccién 1

2. Metodologia 2
2.1. Correccién de perspectiva . . . . . . . 2
2.2. Coordenadas Homogéneas . . . . . . . 2
2.3. Procesamiento de imagen . . .. . .. 4
2.4. Modelado de cdmara . . . . . .. ... 5

3. Resultados 7

3.1. Calibracién de camaras

3.2. Deteccién de objetos por color . ... 8

3.3. Robot Omnidireccional . . . . . . . .. 8
4. Conclusiones 9
1. Introduccién

El conocimiento de la posicién y orientacién de los
vehiculos es fundamental en la robdtica maévil apli-
cada. Existen muchas técnicas y sensores disponibles
actualmente. Sin embargo, la estimacién de posicion
en robotica movil sigue siendo un problema abier-
to en la comunidad cientifica. Se estan investigando
alternativas para abordar este problema. La diversi-
dad de métodos y requerimientos dificulta la compa-
racién objetiva entre metodologias diferentes [1]. La
odometria es una técnica de estimacién de posicién
relativa, ofrece un bajo costo y una precisiéon acep-
table en periodos cortos. Sin embargo, la odometria
presenta altos niveles de error en periodos largos. Los
sistemas de vision especializados, como OptiTrack,
ofrecen alta precisién, también garantizan robustez
en cualquier periodo de operacién. Desafortunada-
mente, estos sistemas son poco accesibles por su alto
costo. En este proyecto de verano, construimos un
sistema de visién de bajo costo, utilizamos cuatro
cdmaras convencionales (webcams) para el posicio-
namiento de un robot mévil.



2. Metodologia

2.1. Correccion de perspectiva

Un aspecto clave de los sistemas de visién es la
correccion de perspectiva. Esto implica transformar
imagenes de pixeles desde el plano interno de la cama-
ra al plano de referencia en el mundo tridimensional
donde se usaran. Para corregir la perspectiva, se ge-
neran homografias desde el plano imagen.

Para crear el algoritmo que genera matrices ho-
mografia, se deben entender conceptos de visién por
computadora. La Figura 1 muestra un diagrama de
un sistema de vision. El algoritmo busca encontrar la
relacion entre los puntos del plano imagen y los del
plano de referencia [2].
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Figura 1: Diagrama de un sistema de visién con 1
camara.

2.2. Coordenadas Homogéneas

Hay varias formas de representar puntos en el es-
pacio 3D, como las coordenadas cartesianas, polares
y angulos directores. En los sistemas de visién, las
coordenadas homogéneas son tutiles. Esto se debe a
que las transformaciones en este plano son lineales, a
diferencia de las coordenadas cartesianas.

En coordenadas cartesianas, los puntos en 1 dimen-
sién se representan con un vector de 1 componente.
Lo mismo ocurre para 2 y 3 dimensiones, donde cada
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Figura 2: Representacién de un punto en el espacio
de n dimensiones con coordenadas cartesianas.
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Figura 3: Representacién de un punto en el espacio
de n dimensiones con coordenadas homogéneas.

componente indica una dimensién, como se muestra
en la figura 2.

En las coordenadas homogéneas, se anade una di-
mension extra al vector. Esta dimension se representa
con un valor al final del vector, como se muestra en la
figura 3. La distancia del punto al origen en esta nue-
va dimensién se llama escala. La escala indica como
esta representada la coordenada.

Se puede definir el operador H,. Este operador con-
vierte un punto P a coordenadas homogéneas. Lo ha-
ce anadiendo una dimensién extra con valor s. El va-
lor s puede ser cualquier niimero real.

X X
Zo
P = H [P = (1)
Tn
%y S

Este operador considera dos casos particulares. El
primer caso ocurre cuando la escala es igual a uno.
En este caso, se puede omitir la escala en el operador



Figura 4: Representacion grafica de una propiedad
fundamental de las coordenadas homogéneas, donde
la recta que intercepta al punto en el plano se puede
multiplicar por cualquier escalar A

H. El segundo caso sucede cuando la escala es cero.
Aqui, el resultado no afecta la direccién ni la norma
del vector P. Esto permite describir la ubicacién de
puntos en el infinito.

HIP)= | * | HolP] = 2)
1n On

Una propiedad interesante del operador H es que
una recta generada es invariante al producto de un
escalar \. Supongamos que un punto p = [z1,z2]T
representa la interseccién de la recta L con el plano
ubicado en z,, como se muestra en la figura 4. Solo
nos interesa la interseccién de la recta con el plano.
Por lo tanto, esta recta puede multiplicarse por un
factor arbitrario A sin afectar el punto P. Gracias a
esta propiedad, podemos concluir que en el espacio
de coordenadas homogéneas existe una infinidad de
vectores que representan el mismo punto en el espacio

3].

El operador de coordenadas homogéneas inverso
tiene como objetivo recuperar el punto dado a partir

de sus coordenadas homogéneas. Este se define con
la notacién H; !, donde s puede ser representado por
cualquier nimero real. Por ejemplo, si consideramos
un vector de dimensiones (n + 1), las cuales son las
coordenadas homogéneas de un punto en espacio de
n dimensiones.

(4)

Al realizar el proceso inverso, el operador H, '[Y]
recupera los valores del vector excepto el 1ltimo, es
decir, yp41.

yn+1]T

Y=[n -~

Hi'[Y] = [n (5)

Este operador solo recupera el punto en la escala
0, sin embargo, cuando la escala corresponde a otro
numero real arbitrario s, es necesario considerar que
el vector puede estar multiplicado por un escalar A.
Esto significa que:

T
Yn yn-‘rl]

Y1 AH [21]
y=1| 1 |=|  |=xm[x] ()
Yn+1 As

En este caso, X representa el punto de coordena-
das cartesianas que queremos recuperar. Al observar
la ecuacion anterior, podemos ver que es necesario eli-
minar el valor escalar A\ para obtener las componentes
del punto H [X]. Este valor se puede determinar al
observar el ultimo elemento de las coordenadas ho-
mogéneas del punto. Este valor es importante para el
operador de coordenadas homogéneas inversas, por lo
que se define como S. Por lo tanto, se tiene que:

SY] =ynt1 = As (7)

Si se conoce la escala S y la ultima entrada de
un vector (n+1)-dimensional, es posible eliminar el
factor A\ a partir de la siguiente ecuacion:

)\.Tl X
s s
H | X]| = =— - = 8
] SY]  As Xy, Tn (®)
S s



Finalmente, para recuperar las coordenadas carte-
sianas queda elimiar el ultimo elemento del vector,
esto se puede realizar a través del operador de coor-
denadas homogéneas inverso (H, ') [3], por lo tanto,
el operador generalizado de coordenadas homogéneas
inverso para cualquier escala queda definido de la si-
guiente manera:

S
H'Y]= Hy'Y 9
2.3. Procesamiento de imagen
2.3.1. Segmentacion de imagen

La segmentacion de imégenes implica dividir una
imagen en sus regiones u objetos componentes. La
extension de esta division varia segtn el problema y la
segmentacién se completa cuando se aisla el objeto de
interés. Este proceso es uno de los mayores desafios en
visién por computadora. Actualmente, hay muchos
enfoques para abordarlo [4].

Aunque la segmentacion de imédgenes en escala de
grises ha sido ampliamente explorada, la segmenta-
ciéon basada en el color ha ganado relevancia. Esto
se debe a su capacidad para extraer mas informa-
cién que las imagenes en blanco y negro. Ademas, los
avances en la capacidad computacional actual per-
miten implementar més algoritmos en este contexto

[5].
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Figura 5: Espacio de color HSV.

Existen diferentes propuestas para la segmentacién

por color. Estas pueden clasificarse de la siguien-
te manera: detecciéon de bordes, umbral, umbral de
histograma, regién, agrupacion de caracteristicas, y
métodos basados en redes neuronales. Después de
analizar las diferentes técnicas, se concluyé que la
segmentacién por color era la opcién més adecuada
por su simplicidad y facilidad de implementacién [4].

2.3.2. Modelos de color

Un modelo de color es un enfoque matemaético para
representar colores mediante listas ordenadas y fini-
tas de elementos. Cada elemento corresponde a un
componente diferente de color. La interpretacién de
estos componentes da como resultado un espacio de

color. Existen varios espacios de color, como RGB,
NTSC, YVbCr, HSV, CMY, entre otros.

El modelo HSV toma su nombre de las iniciales en
inglés de Hue (matiz), Saturation (saturacién) y Va-
lue (valor). Es un espacio de color que describe cémo
los humanos perciben el color. El matiz se refiere al
color dominante que ve el ojo humano, es decir, el
tono. La saturacién indica la cantidad de luz blanca
mezclada con el matiz y representa la intensidad del
color. El valor muestra la luminosidad o intensidad
del color.

El espacio de color HSV se puede visualizar como
un cono geométrico. La dimensién angular representa
el matiz, comenzando con el rojo en 0 grados, pasan-
do al verde a 120 grados, al azul a 240 grados, y vol-
viendo al rojo a 360 grados. La distancia desde el eje
central muestra la saturacién, que varia de 0 a 1. El
eje vertical representa el valor, con negro en la parte
inferior (valor 0) y blanco en la parte superior (valor
1). [4]

2.3.3. Centroide de una figura

El centroide de una figura geémetrica regular tiene
una férmula especifica por figura. Sin embargo, en es-
te trabajo emplearemos la férmula generalizada, que
permite trabajar con figuras irregulares que pueden
incluso rotar, definida como [6]:



Figura 6: Diferentes modelos de cdmaras. (a) Cdmara
de lente computesta. (b) Camara de lente simple. (c)
Céamara pinhole.

> (X x PizelValues)

v > PizelValues (10)
_ 2 (Y x PizelValues)
v= > PizelValues

2.4. Modelado de camara

Para analizar un sistema, proceso u objeto en la
realidad, es necesario desarrollar una expresiéon ma-
tematica que lo describa, conocida como modelo. Pa-
ra hacerlo, es crucial comprender como funciona el
sistema. En el caso de las cAmaras digitales, la ima-
gen se crea a través de un complejo conjunto de lentes
(a). Sin embargo, es posible aproximar este conjun-
to a una cdmara con una sola lente simple (b). Este
nuevo modelo comparte las mismas propiedades que
el modelo mas complejo. Puede enfocar multiples ra-
yos de luz de la realidad y mapearlos en el plano de
la imagen (el sensor fotosensible) de manera idéntica.

La aproximacién entre modelos se facilita gracias
al propdsito especifico de la aplicacion. No es esen-
cial considerar la capacidad del sistema éptico para
enfocar los rayos de luz de la escena observada. Lo
importante es el mapeo de los rayos de luz entre la
escena y el plano de la imagen. Por lo tanto, este
modelo se puede simplificar ain mas. Podemos con-

Figura 7: Proceso de formacién de imagen a través
del modelo Pinhole.

siderar el sistema 6ptico como una caja cerrada con
un agujero por donde entran los rayos de luz (c).

Este modelo, conocido como pinhole, bloquea to-
dos los rayos de luz excepto uno. Esto resulta en una
correspondencia de uno a uno en el plano de la ima-
gen. Los puntos estan conectados por una linea que
atraviesa el pinhole.

Al analizar el modelo de la figura 5, se observa que
la proyeccién en el plano de la imagen estd invertida
en el eje X y el eje Y. Para corregir esto, se cambia
la proyeccion de z = —f a z = +f. En este punto,
ningin eje esta invertido y es equivalente a la proyec-
cién principal.

Otra caracteristica importante de este modelo es
que el sistema de coordenadas es estatico y estd ubi-
cado en el pinhole. Aunque la mayoria de los rayos
sufren una pequena distorsion, el rayo que pasa por
el origen es paralelo al eje z y no sufre distorsion. Este
eje se conoce como el eje éptico [7].

2.4.1. Homografias

A menudo, en un sistema de vision, se busca encon-
trar las correspondencias entre un plano en el espacio
tridimensional y el plano de imagen. Esto es un caso
particular de la matriz de la ciAmara C, ya que los
puntos en el espacio tridimensional deben ser copla-
nares. Esta nueva matriz, que realiza el mapeo en-
tre dos sistemas de coordenadas coplanares, se llama
matriz homografia y se denota con la letra G. Esta



1=HTGH[P]]

Figura 8: Comparacion entre la correspondencia de
puntos en el espacio y correspondecia de puntos co-
planares.

matriz mapea los puntos p del plano de referencia con
los puntos del plano de imagen pu.

Como se observa en la figura 8, la matriz de ho-
mograffa es muy similar a la matriz de la cAmara. La
diferencia principal es que los puntos en el sistema de
referencia de coordenadas estdn en z = 0. Debido a
esto, la Ultima fila de la matriz de la cdmara es 0. Es-
to nos deja con una matriz no singular de tamaio 3 x
3. Por lo tanto, podemos definir la matriz homografia
a partir de la matriz de la camara.

g11 912 913 al
G=|g21 g2 go3| = |RT (11)
g31 932 933 @t

De la expresion anterior se puede sustituir en la
ecuacién que une las correspondencias.

aTH|p]
Hol = | T Hp] (12)
LJ QQTH[P]

Al realizar la operaciéon de las coordenadas ho-
mogéneas inversa, se obtiene

][]
My Q_STH[p] g2 H[p}
Esta expresién se puede igualar a 0, donde se ob-

tiene un sistema de ecuaciones de 2n, donde n es el
numero de correspondencias en los dos sistemas de

(13)

referencia. Dado el nimero de incégnitas que se ne-
cesitan para calcular la matriz homografia G, se ne-
cesitan al menos 4 correspondencias.

[g‘lTH [p]] B [(9‘3TH [p])ux} _ H
@ Hlpl| (@ H[pDpy| [0

Al despejar la ecuacién anterior se puede obtener
el vector que corresponde a las filas de la matriz ho-
mografia.

(14)

A" of el ][9]
[05 " —uyH[ﬂ]T] 2 I

Este sistema de ecuaciones se busca la solucién
minima, sin embargo, tiene la particularidad de que
esta igualado a 0, por lo que una de las soluciones
para el vector de las columndas de la matriz G puede
ser 0, por lo tanto, se utiliza la descomposicién en
valores singulares (SVD) de la matriz que acompana
al vector de incégnitas, es decir

A=UxvT (16)

Donde U y V son matrices ortogonales y ¢ es una
matriz diagonal con los valores singualres de A en la
diagonal. Dicha expresion se puede representar de la
siguiente forma.

O’l’l}{

T

[ul u2 Ug] 02U5
O’g’Ug;

(17)

Donde 01 > 02 > 3. Debido a que se busca que
la solucién sea minima se puede determinar que la
solucién del sistema de ecuaciones se encuentra en la
ultima columna de la matriz V' [7].

2.4.2. Triangulacién

La mayoria de los algoritmos de triangulacion en
vision por computadora se basan en el modelo de la
camara pinhole. La forma generalizada de la ecuacion
que relaciona un punto en el espacio con el plano
imagen se detemina

p=H'[CH[P] (18)



Al tratar de despejar el punto P de la ecuacién
anterior se observa que, por propiedades de las coor-
denadas homogéneas, aparece un ntumero real A, el
cual representa todos los valores por los que atravie-
sa la proyeccion del punto desde el sistema de coor-
denadas de la cdmara, es decir, resulta las siguientes
ecuaciones.

M) = K (1 ~rf] []
(19)

P
SeHls] = Ko [/ R3] ||
Donde C; = K;[RT — RTt;]. Al despejar P de las
2 ecuaciones se obtienen las siguientes expresiones

P= tl + AlRlelH[ul]

) (20)

P= t2 + )\1R2K2 H[,LLQ]

Si sustituimos las expresiones Ry K; ' H[u] = dy y

Ro K5 iz [2] = d2 nos queda el siguientes sistema de
ecuaciones

Al
[d2 —dQ] {)\Q] =ty —1t (21)
En el cual podemos obtener los valores de A1 y As.
Por 1ltimo, la expresion que une los 2 puntos de coor-
denadas p de las 2 cAmaras con un punto en el espacio
tridimensional se define como [8]

t1 +to + /\1d1 + )\gdz
p= D)

(22)

2.4.3. Triangulaciéon generalizada

Para realizar la triangulacién con m ntmero de
camaras, es necesario generalizar la expresién descri-
ta anteriormente. Esta técnica se conoce como Me-
dia de puntos con minima dispersién (Mean of Points
with Minimum Dispersion). Para cada dispositivo, se
observa un punto detectado por un rayo de luz. A
menudo, estos rayos son lineas oblicuas debido a la
resolucién y los errores de deteccién.

i = ti + Aiby,

i=1,2-,m. (23)

Por lo tanto el punto observado puede ser definido
como una media de puntos p; como

1 & 1
P== , = —(Bl+T1,, 24
= (BTl (20)

b

donde 1,, = [1,1,---,1]T es un vector de dimen-
sion m x 1 y todos sus valores son 1, B y T son
matrices de dimension 3 X m definidos como

B=[bi by -+ by 25)
T=[t1 t b

y | es un vector de dimensién m x 1 desconocido
dado por

Am

I=[\ A 1"

(26)

Para obtener los valores del vector | se puede de-
terminar a través de la expresién

1

m

1
l=(N—-—B"B)y"Y(=B"T1,, — h) (27)
m

donde N es una matriz diagonal m x m, y h es una
matriz de dimensiéon m x 1 definidos respectivamente

como

N = diag(bT by, bLby, - -

tT bm] T

m

Al resolver la ecuacién (27), el vector resultante !
se substituye en la ecuacién (24), para obtener las
coordenadas del punto observado P en el espacio [8].

3.
3.1.

Resultados

Calibracién de camaras

Se realizé la calibracion de cada una de las 4 cdma-
ras. Se tomaron entre 13 y 17 fotos por cdmara a una
cuadricula (patrén de calibracién), como se muestra
en la Figura 9(Izda). Después de calibrar la cdmara,
se captur6 una imagen extra para calcular la posicién



Figura 9: (Izda.) Imagen tomada para la obtencién de los pardmetros intrinseco y extrinsecos de la cdmara.
(Centro) Imagen de referencia utilizada para ubicar la cdmara en el sistema de coordenadas de referencia.
(Dcha.) Imagen procesada con la correccién de perspectiva.

Figura 10: (Izda.) Cono caracteristico del Espacio HSV. (Centro) Imagen segmentada por deteccién de color
morado. (Dcha.) Centroide del objeto morado detectado en la imagen.

de la cdmara respecto al sistema de referencia, como
se muestra en la figura 9(Centro). Este tltimo proceso
se realiz6 usando cuatro puntos marcados en el suelo
para obtener la homografia asociada y de ella calcu-
lar la ubicar y orientacion de la camara. Més aun, la
homografia obtenida permite corregir la perspectiva
de la imagen original, como se muestra en la Figura
9(Dcha). Este proceso de calibracién se repitié para
las cuatro camaras del sistema propuesto.

3.2. Deteccién de objetos por color

Para detectar la posicién del robot, se utilizaron
distintivos de colores. Los colores tienden a variar
con los cambios de luz exterior y la configuracion de
la camara. Esto se debe a que el color percibido es
subjetivo. Por lo tanto, en lugar de definir un color
exacto, se establece un umbral para permitir cierta
tolerancia ante estos cambios.

En la Figura 9(Centro) se muestra una imagen cap-
turada por una cdmara del sistema de visién. En la

Figura 10(Izda) se muestra el cono caracteristico del
modelo HSV. A esta imagen se le aplicé la segmenta-
cién al color morado, dando como resultado la figura
10(Centro).

Después el resultado se transforma en una nueva
imagen, donde los pixeles detectados tienen el valor
de 1, mientras que el resto de los pixeles toman el
valor de 0, esto con la finalidad de ser capaz de cal-
cular de forma mas eficiente el centroide del objeto a
través de la ecuacién 10. La figura 10(Dcha.) mues-
tra contiene una marca en las coordenadas pixel del
centroide detectado.

3.3. Robot Omnidireccional

Para este sistema se utilizé un robot mévil omnidi-
reccional, al cual se le colocaron 2 distintivos, como
se observa en la figura 12. El distintivo color naran-
ja representa el punto de control del robot, mientras
que el distintivo color rosa se utiliza para calcular la
orientacion del robot.



Figura 11: Deteccién del robot a través del sistema
de cuatro camaras propuesto usando distintivos de
color.

Una vez detectado por las 4 camaras, las coorde-
nadas pixeles se convierten en rayos de direccion, se-
guido del algoritmo de triangulacion, en la figura 12
(Arriba) se observa la altura real contra la altura cal-
culada por el sistema de vision, visualizada en el ser-
vidor, la cual esta siendo enviada al control del robot,
figura 12 (Abajo).

La creacién de sistemas de posicionamiento me-
diante visién requiere varias etapas. Primero, se debe
ubicar las camaras. Es necesario saber cudl sera el
area de trabajo donde se detectard la posicién. Lue-
go, se realiza la calibracion, que consiste en obtener
fotografias utiles. A veces, las fotos tomadas no per-
miten calibrar las cAmaras de manera adecuada.

Después, se comprueban las estimaciones. Es nece-
sario verificar las posiciones calculadas por el sistema
de calibracion. Este proceso suele ser de prueba y
error, especialmente para principiantes. Por 1ltimo,
se revisa la ubicacién. Una vez completada la calibra-
cion, el sistema queda fijo.

Cuando el sistema de posicionamiento esté listo, se
puede usar en cualquier momento. Ademds, funciona
para otras aplicaciones.

4. Conclusiones

Los sistemas de visién multicdmara con camaras
convencionales son una solucién de bajo costo pa-

C:\Program Files\mosquitto>mosquitto_sub -h
192.168.1.3 -p 1883 -t Robot/Position/Z
45,2684

45.2666

45.271

45.2652

45.3948

45.4211

45.416

45.4279

45.4259

45.4146

45,4243

45.3897

Figura 12: (Arriba) Distintivo naranja sobre el robot
a una altura de 45.4 mm. (Abajo) Altura de 45.38 mm
obtenida mediante el sistema multicamara propuesto.

ra el posicionamiento de robots méviles. Aunque la
calibracién puede ser laboriosa al principio, una vez
calibrado y fijo, el sistema esta listo para su uso. Un
sistema de visién como el propuesto puede servir para
otros propositos, ademas de mejorar el conocimiento
del entorno del robot.

Por ejemplo, se pueden detectar objetos para usar
en algoritmos de evasién de obstaculos. También es
posible generar un mapa del area de trabajo para
realizar simulaciones y mejorar el entendimiento del
entorno. Ademads, un mismo sistema de visiéon puede
ser usado para el posicionamiento de cualquier tipo de
sistema robético, incluidos brazos robdticos y drones.
Esto ofrece gran flexibilidad para su uso.
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