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Resumen: En este proyecto se implementó el método digitalización 3D por proyección de franjas para
el análisis de deformación f́ısica de veh́ıculos. Se emplearon veh́ıculos de juguete idénticos como objetos
de prueba. Uno de los veh́ıculos se usó como referencia, y el otro fue sometido deformaciones f́ısicas
simulando daño estructural debido a un accidente. Los dos veh́ıculos fueron reconstruidos de forma pre-
cisa (3.6 millones de puntos por cada objeto) usando el método de proyección de franjas. Los daños en
la estructura del veh́ıculo deformado fueron detectados y cuantificados a partir de las reconstrucciones.
Esta metodoloǵıa facilita la evaluación de daños, recreación de accidentes, y verificación de seguridad
automotriz. Este proyecto ofrece una herramienta accesible para fabricantes automotrices, talleres de
reparación, y empresas de seguros. De esta forma, se está contribuyendo en la adaptación de la tecno-
loǵıa de digitalización 3D, actualmente disponible para marcas consolidadas como Volvo, Tesla y Ferrari.
La democratización de la tecnoloǵıa de digitalización 3D contribuirá a mejorar la seguridad vial y a re-
ducir los costos asociados con los daños vehiculares, haciendo que la digitalización 3D sea accesible a
un público más amplio y promoviendo la eficiencia en la industria automotriz.

Palabras clave: Siniestrado, Proyección de Franjas, Industria Automotriz, Carroceŕıa, Digitalización 3D,
Nube de Puntos, Calibración, Valuación, Triangulación.
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1 Introducción

Los accidentes automoviĺısticos constituyen
una de las principales causas de muerte en Méxi-
co. Según el Instituto Nacional de Estad́ıstica
y Geograf́ıa (INEGI), en promedio, 12 personas
pierden la vida diariamente debido a estos inci-
dentes. El informe más reciente del INEGI sobre
Accidentes de Tránsito reveló que, en 2022, se re-
gistraron 377,231 siniestros en zonas urbanas y
suburbanas.

En el marco del programa “Verano Delf́ın,” se
abordó la digitalización tridimensional de objetos
mediante proyección de franjas. Este método es
conocido por su rapidez, versatilidad y precisión
en las reconstrucciones. En este proyecto, se em-
plearon carros de juguete como modelos de prue-
ba de un veh́ıculo real. La fase inicial consistió en
escanear el auto de fábrica (el carro sin altera-
ciones en la carroceŕıa), generando una nube de
puntos de 3.6 millones. Posteriormente, se com-
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paró esta nube de puntos con otra de igual den-
sidad, correspondiente al auto chocado (el carro
modificado f́ısicamente para simular tres de los
choques más frecuentes), utilizando algoritmos
desarrollados en MATLAB.

El modelo desarrollado ofrece una solución
más económica y versátil, aplicable a una amplia
variedad de sectores. La recopilación de datos ha
permitido identificar diversas aplicaciones, como
la reconstrucción de choques con fines forenses,
regulación de normativas de seguridad vehicular,
y el análisis estructural de los daños. Estos análi-
sis facilitan a los ingenieros la mejora de la es-
tructura de los veh́ıculos y la evaluación de los
materiales utilizados en su fabricación.

En este documento se presentará la teoŕıa bási-
ca necesaria para comprender el funcionamiento
del método, incluyendo conceptos fundamenta-
les como ecuaciones homogéneas, matrices trans-
puestas, triangulación, homograf́ıas, matrices de
rotación y traslación, aśı como métodos de cali-
bración. También se describirán las condiciones
esenciales para obtener resultados de alta preci-
sión, se analizarán los resultados de las pruebas
realizadas y se discutirán posibles mejoras y di-
recciones para futuras investigaciones derivadas
de este trabajo.

1.1 Antecedentes

La digitalización 3D en la industria automotriz
no es una novedad; sin embargo, sigue siendo
una tecnoloǵıa exclusiva debido a sus altos costos.
Marcas de prestigio como Volvo, BMW, Ferrari y
Tesla han innovado en sus centros de seguridad,
realizando simulaciones de choques para verificar
la seguridad de sus veh́ıculos. Este enfoque repre-
senta un avance significativo desde 1950, cuando
Samuel Alderson realizó el primer choque inten-
cional para evaluar la seguridad de las bolsas de
aire y la eyección de los asientos. Más tarde, su
empresa, Humanetics, se convirtió en una de las
ĺıderes en la verificación de la seguridad automo-
triz.

Actualmente, estas pruebas han evolucionado
de manera considerable. Gracias al desarrollo de
tecnoloǵıas como la digitalización 3D, se ha crea-
do un modelo de datos e información que per-
mite simular estas pruebas con resultados impre-
sionantes. Los datos obtenidos a través de esta
digitalización y el software desarrollado pueden

determinar automáticamente la postura y movi-
miento del muñeco antes, durante y después del
choque, como se muestra en la Fig. 1. Aunque
existen factores dif́ıciles de prever, los datos ob-
tenidos son altamente precisos.

Según O’Connor, el objetivo de Humanetics es
establecer un ecosistema de pruebas de seguri-
dad integral e interconectado. Este ecosistema
se alinea con las últimas tendencias tecnológi-
cas, incluyendo la autonomı́a avanzada, veh́ıcu-
los conectados, sistemas avanzados de asistencia
al conductor, y sistemas adaptativos como cintu-
rones de seguridad inteligentes. Además, incluye
modelos virtuales de humanos y muñecos, aśı co-
mo herramientas f́ısicas de seguridad pasiva [1].

Figura 1: Simulación digitalizada de siniestro por
la compañ́ıa Humanetics.

2 Metodoloǵıa
2.1 Materiales y método

Se utilizó un sistema similar al sistema estéreo,
pero con una variación clave: en lugar de dos
cámaras, se reemplazó una de ellas por un pro-
yector. Este enfoque innovador permitió captar la
profundidad y los detalles del objeto de interés
con mayor precisión. La Fig. 2 muestra el equipo
empleado en este proyecto: una webcam Logitech
C310 para la captura de imágenes, y un proyector
Epson W39 para la proyección de patrones.

Para el procesamiento, análisis y visualización
de las imágenes, se utilizó el software MATLAB,
que facilitó la captura de datos, reconstrucción
tridimensional, y alineación de reconstruccio-
nes parciales. Este software ofreció herramientas
avanzadas para la calibración del sistema, ajuste
de parámetros, y la interpretación de los resulta-
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Figura 2: Arreglo experimental del sistema de proyección de franjas. (a) Webcam Logitech C310. (b)
Proyector Epson W39.

dos. Además, el uso combinado de la webcam y
el proyector permitió una alta precisión en la re-
construcción de modelos tridimensionales, crucial
para aplicaciones como la simulación de impactos
y la evaluación de daños en objetos de estudio. La
cámara ordinaria relaciona una escena en 3D con
una imagen en 2D, para lo cual cada punto de la
escena es considerado como un cono de luz.

2.2 Fundamentos

Para comprender la operación del sistema pro-
puesto, la cámara y el proyector deben ser consi-
derados sensores de dirección. Para este análisis, se
puede emplear el modelo pinhole, que es una sim-
plificación de las cámaras con lentes. En el mode-
lo pinhole, la cámara es una caja negra con un
único orificio de tamaño infinitesimal, en el cual
un punto en la escena es capturado una única vez
en el plano de imagen, como se muestra en la Fig.
3 [1]. Este modelo permite estimar los paráme-
tros fundamentales de la cámara, tales como la
distancia focal y el centro de la cámara, por me-
dio de algoritmos simples. Sin embargo, surge un
problema de inversión en el eje X y en el eje Y
de la escena en el plano de imagen. Una solución
consiste en reacomodar el plano imagen, de tal
forma que la distancia focal se mantiene y la ima-
gen capturada no resulta invertida.

Para fines del álgebra utilizada en reconstruc-
ciones 3D, es conveniente comprender un nuevo
espacio que mapea cualquier vector en N dimen-
siones a uno en N+1 dimensiones. Esto nos per-
mite tratar con operaciones no lineales en el de-
sarrollo como si fuesen lineales. Indagando más,
en el espacio Euclidiano Rn, una transformación

Figura 3: Modelo pinhole de formación de ima-
gen.

lineal representada por la multiplicación de una
matriz a un vector, conserva los puntos en el infi-
nito.

Por otro lado, en el espacio Proyectivo, repre-
sentado como Pn, las coordenadas son aumenta-
das en una dimensión, en lo que se conoce co-
mo coordenadas homogéneas. En este espacio,
cualquier transformación es una transformación
lineal aplicada a las coordenadas homogéneas.
Para ello, es necesaria la definición de los opera-
dores de coordenadas homogéneas y de coorde-
nadas homogéneas inversas. Estos son los opera-
dores que nos permiten el mapeo del espacio de
Euclidiano al espacio proyectivo y viceversa, co-
mo se muestra en la Fig. 4 [2].

Los operadores descritos tienen ciertas propie-
dades de gran importancia. Una de ellas es el ele-
mento extra que se les agrega, conocido como la
escala, la cual puede ser cualquier número real. A
esta generalmente se le asigna el valor de s, de tal
forma que la relación entre los operadores descri-

3



Figura 4: Mapeo entre el espacio Euclidiano y el
espacio proyectivo.

tos es
H−1

s [y] =
s

S[y]
Hs[y], (1)

donde S[.] es un operador que devuelve el último
término de un vector.

De manera general, cualquier punto en un es-
pacio de N dimensiones será mapeado en una
ĺınea en el espacio de N+1 dimensiones, como
se muestra en la Fig. 5(a) [2]. Esto corrobora la
propiedad de invarianza de escala en las coorde-
nadas homogéneas, ya que, independientemente
del factor por el cual se multipliquen las coor-
denadas homogéneas, seguirán representando la
misma ĺınea.

Esto nos permitirá obtener los parámetros im-
portantes para la cámara y el proyector desde la
perspectiva de los dispositivos. Para ello, es nece-
sario considerar un eje de referencia global, don-
de se tiene un vector pc, que escapa desde el dis-
positivo, atraviesa el plano imagen y culmina en
un punto de la escena capturada ρ, como se mues-
tra en la Fig. 5(b) [3].

Como se menciona en [4], el vector pc esta da-
do por

pc = RT (p− t), (2)

donde R es una matriz 3x3 que representa la ro-
tación de la cámara respecto a los ejes de refe-
rencia globales, y t es el vector de traslación que
describe la posición del dispositivo. Una siguien-
te simplificación es posible, haciendo uso de las
coordenadas homogéneas, tal que

pc = LH[ρ]. (3)

Notar que para esta última, se define la matriz de
parámetros extŕınsecos L = [RT ,−RT t]. En es-
te punto, es crucial la discretización del plano de

(a)

(b)

Figura 5: (a) Coordenadas homogéneas del pun-
to x. (b) Perspectiva de cámara.

imagen para su almacenamiento, procesamien-
to y visualización en dispositivos electrónicos.
Con este fin, se discretiza el plano de imagen en
un arreglo de ṕıxeles. Dada la discretización del
plano imagen, consideramos ahora las coordena-
das pixel µ = (α, β), que se relacionaran con el
vector ρc de la siguiente forma

µ = H−1[SΞsρc], (4)

donde se le agrega una matriz de escala Ξs, la
cual se define de la siguiente forma

Ξs =


s

s
. . .

1

 , (5)

donde s es la distancia focal. Más allá, esta matriz
tiene la función de cambiar la escala del objeto
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en todas las direcciones, de tal forma que al ope-
rar con coordenadas homogéneas podemos utili-
zar operadores con escala 1.

Por otro lado, en Ec. (4) también se agrega la
matriz de muestreo S, la cual es de tamaño 3x3
y especifica el tamaño del ṕıxel y el skew, siendo
este último una distorsión geométrica que ocurre
cuando la cámara no está perfectamente alineada
con el plano del objeto que se está capturando.
Se puede simplificar 4 sustituyendo por lo obte-
nido en 3 y definiendo la matriz de parámetros
intŕınsecos K como

µ = H−1[CH[ρ]], (6)

donde
C = K[RT ,−RT t] (7)

es una matriz 3x4 conocida como matriz de dispo-
sitivo [5].

Hasta el momento se han tratado con transfor-
maciones en el espacio proyectivo tal que P2→P3.
Sin embargo, para llegar a conocer las matrices de
parámetros intŕınsecos y extŕınsecos, sera necesa-
rio considerar una transformación especial llama-
da homograf́ıa. Esta se define en [6], como aquel
mapeo de P2→P2 si y solo si existe una matriz 3x3
no singular denominada H, en donde se cumple
que h(x) = Hx, donde x ∈ P2.

Esta transformación se consigue si todos los
puntos de la escena capturada se encuentran en
el mismo plano, es decir que sea coplanar, como
se muestra en la Fig. 6 [7]. En este caso, la rela-
ción entre las coordenadas f́ısicas y coordenadas
pixel esta expresada como

µ = H−1[GH[ρ]], (8)

donde G es la matriz que consigue una transfor-
mación homograf́ıa, la cual esta definida como

G = K[r1, r2,−RT t]. (9)

Observe que la definición de la homograf́ıa se ba-
sa en suprimir la componente z de un punto ob-
servado; es decir, la 3ra fila de la matriz de ro-
tación es omitida. La matriz homograf́ıa es no-
singular, lo que implica que es invertible. Esto es
especialmente conveniente, ya que (6) se podŕıa
expresar de la siguiente forma

ρ = H−1[G−1H[µ]]. (10)

Figura 6: Transformación homograf́ıa.

Tal y como es mencionado en [8], mediante el
método de transformación ĺıneal directa es posi-
ble hacer una estimación de una homograf́ıa dado
que tengamos correspondencias entre los puntos
ρ y µ. Siendo que la matriz homograf́ıa esta dada
por

G =

g1,1 g1,2 g1,3
g2,1 g2,2 g2,3
g3,1 g3,2 g3,3

 =

gT1gT2
gT3

 , (11)

donde se considera la partición en filas de la ma-
triz. También se tiene la particularidad que el
término g3,3 tiene el valor de la escala. Toman-
do en cuenta la definición en (1) aplicada en (8)
tenemos

µ =
1

S[GH[ρ]]

[
gT1
gT2

]
H[ρ], (12)

al reacomodar y desarollar obtenemos

gT3 H[ρ]µ =

[
gT1 H[ρ]
gT1 H[ρ]

]
. (13)

Esta ecuación se puede reacomodar de forma tal
que se le puede aplicar la resolución por mı́nimos
cuadrados, de la forma Ag = 02m. Es importan-
te notar que m representa el número de corres-
pondencias utilizadas para la estimación y g es
una matriz 9x1. La matriz A se construye de la
siguiente forma

A =



H[ρ1]
T 0T3 −µx1H[ρ1]

T

...
...

...
H[ρm]T 0T3 −µxmH[ρm]T

0T3 H[ρ1]
T −µy1H[ρ1]

T

...
...

...
0T3 H[ρm]T −µymH[ρm]T


. (14)
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Figura 7: (Izq.) Patrón de calibración amarillo impreso colocado sobre un plano de referencia, y patrón
cian proyectado con el proyector del sistema. (Dcha.) Aplicación Checkerboard Detector.

Dado que g tiene 8 variables desconocidas y
que cada correspondencia te otorga dos ecuacio-
nes, necesitamos al menos 4 correspondencias pa-
ra obtener la homograf́ıa deseada. Esta estima-
ción nos funcionará para la calibración del siste-
ma.

2.3 Procedimiento experimental

2.3.1 Calibración

La parte experimental, donde se comenzó a tra-
bajar de manera más práctica y menos teórica,
inició con el proceso de calibración. Este proce-
so marcó un punto de inflexión entre la teoŕıa y
la aplicación de los métodos estudiados desde el
inicio de la estancia. Para la calibración, nos basa-
mos en un sistema estéreo, pero en lugar de uti-
lizar dos cámaras, una de ellas fue reemplazada
por un proyector. Para este proceso, se optó por
una calibración simultánea de la cámara y el pro-
yector, siguiendo la metodoloǵıa expuesta en [9].
Para ello, se situaron los dispositivos de manera
que se obtuviera una vista superior de un patrón
de calibración, con una distancia aproximada de
10 cm entre ellos, tomando como referencia el
plano z. La cámara se colocó a aproximadamente
120 grados, y el proyector a 70 grados del mis-
mo plano, lo que proporcionó un amplio espectro
de visión para la cámara, permitiéndole capturar
gran parte del objeto.

Para el patrón de calibración, utilizamos un for-
mato impreso sobre una tablilla de unicel, similar
al patrón de un tablero de ajedrez de 7x10 de co-
lor amarillo. Posteriormente, se proyectó sobre el
mismo un patrón igual pero de color cian con di-
ferente proporción, como se muestra en la Fig.
7(Izda).

Una vez colocado nuestro patrón de calibra-
ción, es importante desactivar las configuraciones
automáticas de la cámara, ya que parámetros co-
mo brillo, contraste, saturación y enfoque serán
ajustados manualmente utilizando la aplicación
Image Acquisition de MATLAB.

Después de ajustar manualmente estos paráme-
tros y asegurarnos de que tenemos una buena vi-
sualización del patrón de calibración, comenza-
mos a tomar fotograf́ıas del mismo desde varias
perspectivas. Es crucial no mover ni la cámara ni
el proyector; solo se debe mover el tablero de cali-
bración, agregando algunas inclinaciones y varia-
ciones de altura y posición para lograr una correc-
ta calibración. Se recomienda que la última foto-
graf́ıa capture la posición final del tablero, que es
donde se colocará el objeto para la digitalización.
En nuestro caso, el tablero se colocó sobre una
superficie plana y se fijó con cinta adhesiva a la
mesa para evitar movimientos que pudieran des-
calibrar el sistema.

Después de tomar 13 fotograf́ıas para la cali-
bración de nuestro sistema, utilizamos la aplica-
ción de MATLAB Checkerboard Detector para
encontrar los parámetros intŕınsecos y extŕınse-
cos, ver Fig. 7(Dcha). Estas funciones desarrolla-
das nos permitieron determinar la posición tan-
to de la cámara como del proyector respecto al
plano de referencia. Aunque no logramos obtener
la precisión deseada en todas las mediciones, el
proceso permitió ajustar y refinar la configuración
para mejorar los resultados.

Mediante el uso de estas herramientas y técni-
cas, se pudo avanzar significativamente en la cali-
bración del sistema, asegurando que la digitaliza-
ción tridimensional fuera lo más precisa posible.
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Figura 8: (Izda.) Vistas del carro original. (Dcha.) Vista del carro chocado.

Figura 9: (a) Sistema experimental de proyección de franjas calibrado. (b) Caras digitalizadas de los
objetos de prueba. (c) Selección manual de puntos para la unión de vistas. (d) Unión de nube de puntos.

Este procedimiento es fundamental para garanti-
zar la exactitud de las mediciones y la calidad de
los datos obtenidos durante el proceso de digita-
lización.

2.3.2 Proyección de Franjas

Una vez calibrado nuestro sistema, comenza-
mos a practicar con la reconstrucción de múlti-
ples objetos. Al principio, practicamos la digita-
lización con diferentes objetos con textura y de
diferente forma para perfeccionar la técnica. Nos
dimos cuenta de que era importante no generar
ninguna interferencia en nuestro sistema cámara-
proyector.

Para lograr una reconstrucción completa y de-
tallada, tomamos cuatro vistas principales del ob-
jeto y dos vistas auxiliares, ver Fig. 8. Estas vistas
adicionales nos ayudaron a conectar los puntos y
asegurar una representación precisa de todas las
perspectivas del objeto.

La proyección de franjas se realizó considera-
mos un corrimiento de fase de L = 4 y un in-
cremento de rejillas de N.S = 24, lo que resultó

en un total de 192 fotograf́ıas, ver Fig. 9(a). Este
enfoque nos permitió obtener una perspectiva del
objeto de excelente calidad, asegurando que to-
dos los detalles fueran capturados con precisión.

Habiendo obtenido la fase desenvuelta, es po-
sible hacer una triangulación. Este es un método
geométrico y matemático empleado para calcular
las posiciones 3D de un punto en el espacio uti-
lizando sus proyecciones en dos o más imágenes
planas. Para este método existen varios enfoques,
en este caso en particular usamos el método de
intersección ĺınea a ĺınea [4]. Para dos puntos de
observación, un punto de la escena 3D está dado
por

pi = ti + λidi, (15)

donde di = RiK
−1
i H[µi], dado i = 1, 2 debido a

la única presencia de una cámara y un proyector,
después se igualan los puntos. Lo que se busca
obtener son las constantes λ, para ello resolvemos
un sistema de ecuaciones, de la forma

L = A†(t2 − t1), (16)
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donde L contiene las constantes λ, y [.]† refiere a
la inversa de Moore-Penrose, de esta forma asegu-
rando que se obtiene la mejor aproximación posi-
ble a la solución del sistema de ecuaciones.

Por último paso, obtenemos la nube de puntos
para la vista deseada, usando el siguiente modelo
matemático:

p =
t1 + t2 + λ1d1 + λ2d2

2
. (17)

El resultado obtenido fueron las nubes de pun-
tos que representan las reconstrucciones 3D de
los objetos, como se muestra en la Fig. 9(b).

2.3.3 Unión de Vistas

Después de obtener reconstrucciones parciales,
se debe obtener correspondencias puntuales en-
tre las nubes de puntos. Se debe tomar en cuenta
que todo movimiento de un cuerpo ŕıgido está da-
do por una matriz de rotación y un vector de tras-
lación, por lo cual es cuestión de encontrar estos
parámetros. En este proyecto se utilizó un algo-
ritmo de optimización al cual se le introdujeron
20 puntos seleccionados manualmente por vista,
ver Fig. 9(c). El proceso de ajuste entregó como
resultado la matriz de rotación y el vector de tras-
lación necesario para unir las nubes de puntos,
ver Fig. 9(d). Este mismo proceso se realizó para
la reconstrucción del carro chocado y del original.

2.3.4 Diseño de muestreo

El tamaño de muestra de 192 fotos por vista, re-
sultó en un total de 1152 fotograf́ıas al capturar
seis vistas. Este enfoque detallado permitió cap-
turar hasta el más mı́nimo detalle del veh́ıculo.
La intención es que, al escalar esta metodoloǵıa a
un automóvil real, se puedan apreciar incluso los
detalles más pequeños, como los golpes al abrir
la puerta, los impactos de pequeñas piedras en
la carretera y las ligeras abolladuras provocadas
por el granizo. Esto proporciona una perspectiva
completa y precisa del automóvil, asegurando que
cada detalle se registre con gran fidelidad.

3 Resultados
La Figura 10(Izda) muestra el sistema de digi-

talización capturando una vista del carro de re-
ferencia. Observamos que el ángulo y la posi-
ción de la cámara y el proyector eran cruciales.
La digitalización completa de cada objeto se ob-
tuvo uniendo las reconstrucciones parciales em-

parejando puntos clave de correspondencia con
el procedimiento descrito anteriormente. La Fig.
10(Izda) muestra las reconstrucciones completas
del carro de referencia y el carro chocado.

Para finalizar la comparación de la nube de
puntos, utilizamos nuestro algoritmo basado en
el método Iterative Closest Point (ICP). Compa-
rando punto por punto entre los 3.6 millones de
puntos obtenidos. La Fig. 11 muestra el mapa de
deformación obtenido. Esta visualización facilita
la identificación de las zonas de impacto y la mag-
nitud del daño. En particular, los puntos rojos in-
dican deformaciones significativas, mientras que
los puntos azules confirman las áreas que perma-
necieron intactas.

El análisis detallado de la deformación nos pro-
porciona información valiosa para entender me-
jor la magnitud del impacto y las zonas más afec-
tadas del veh́ıculo. Este tipo de modelado y com-
paración es crucial para la evaluación de daños en
veh́ıculos siniestrados, ya que ofrece una visuali-
zación precisa y detallada del estado del veh́ıculo
tras un accidente.

4 Discusión de resultados
El análisis de deformación de veh́ıculos sinies-

trados mediante la proyección en la evaluación de
daños vehiculares resultó ser grato para su uso. La
digitalización 3D del veh́ıculo utilizando un ca-
rro de control remoto nos permitió capturar una
representación digital del veh́ıculo. La técnica de
proyección de franjas proporcionó datos precisos
sobre las deformaciones y daños en la estructura
del veh́ıculo. Con 3.6 millones de puntos en ca-
da nube de puntos, logramos una resolución en el
modelo para detectar incluso las deformaciones
más pequeñas.

La implementación del algoritmo ICP (Iterati-
ve Closest Point) permitió comparar las nubes de
puntos del veh́ıculo siniestrado con las del veh́ıcu-
lo en su estado original. Esta comparación pun-
to por punto permitió visualizar claramente las
áreas dañadas (marcadas en rojo) y las áreas no
afectadas (marcadas en azul). La precisión en la
correspondencia de puntos entre las nubes fue
crucial para identificar las deformaciones.

Esta aplicación es sustancial para múltiples
usos, incluyendo la evaluación de seguros, repa-
raciones y estudios de seguridad vehicular. La ca-
pacidad de detectar y medir daños con alta pre-
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Figura 10: (Izda.) Sistema de digitalización de los objetos. (Dcha.) Digitalización de los carros de refe-
rencia y chocado.

Figura 11: Vistas del mapa de diferencia entre el
carro de referencia y el carro chocado.

cisión puede mejorar significativamente la toma
de decisiones en estos campos. Además, la me-
todoloǵıa desarrollada puede adaptarse para ha-
cer accesible esta tecnoloǵıa a un mercado más
amplio y económico. Esto puede promover una
mejor evaluación y reconstrucción de accidentes,
contribuyendo a mejorar la seguridad vial y redu-
cir los costos asociados con los daños vehiculares.

Existen algunas limitaciones que deben ser con-

sideradas. La precisión del modelado depende en
gran medida de la calibración del equipo y de las
condiciones de captura (iluminación, ángulos, re-
solución, etc.). Además, el algoritmo ICP puede
beneficiarse de mejoras en términos de velocidad
y precisión en la correspondencia de puntos.

Para futuras investigaciones, se recomienda ex-
plorar técnicas adicionales de procesamiento de
imágenes y modelado 3D que puedan comple-
mentar el uso de homograf́ıas y proyección de
luz. Asimismo, la integración de inteligencia ar-
tificial y aprendizaje automático podŕıa optimizar
el proceso de comparación de nubes de puntos,
haciendo el análisis más rápido y preciso.

5 Conclusiones
Durante la estancia del verano de investiga-

ción del programa Delf́ın en el CITEDI-IPN, se ad-
quirieron conocimientos teóricos y prácticos so-
bre la digitalización 3D. La técnica de proyección
de franjas es una herramienta eficaz para la eva-
luación de daños vehiculares, proporcionando re-
construcciones detalladas y precisas.

La implementación de esta tecnoloǵıa a un mo-
delo más accesible y económico es un gran resul-
tado. El desarrollo de una herramienta para fa-
bricantes de automóviles, talleres de reparación
y empresas de seguros mejorará la evaluación y
reparación de daños vehiculares, promoviendo la
tecnoloǵıa de digitalización 3D. De esta manera,
se puede procesar la evaluación de un veh́ıculo
siniestrado y hacer más precisos los presupuestos
de costos de reparación.
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En resumen, este proyecto ha demostrado la
viabilidad de adaptar tecnoloǵıas avanzadas pa-
ra un uso más amplio. También ha sentado las
bases para el campo de la digitalización 3D en la
industria automotriz. Adicionalmente, el proyec-
to facilita la detección de fallas estructurales po-
tenciales. Esto significa que, además de realizar
pruebas en veh́ıculos siniestrados, se podŕıa eva-
luar de manera rutinaria y a bajo costo cualquier
veh́ıculo para identificar fallas potenciales antes
de que ocurran. Aśı, este proyecto podŕıa contri-
buir a la mejora de la seguridad vial y a la reduc-
ción de los costos asociados con la reparación de
daños vehiculares cuando estos ya han ocurrido.
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