Analisis de Deformacion de
Vehiculos Siniestrados
Mediante Proyeccion de Luz

I P N Ramirez Saul, Diaz Fernando, Zepeda Victor
’ 4 A7H VLD Rigoberto Juarez Salazar (asesor)
Dearaio ts Toctama gt PrOyecto Delfin
Centro de Investigacion y Desarrollo de Tecnologia Digital,
Instituto Politécnico Nacional, Baja California, Mexico.

2 de septiembre de 2024

Resumen: En este proyecto se implementé el método digitalizacién 3D por proyeccién de franjas para
el andlisis de deformacidn fisica de vehiculos. Se emplearon vehiculos de juguete idénticos como objetos
de prueba. Uno de los vehiculos se us6 como referencia, y el otro fue sometido deformaciones fisicas
simulando dafio estructural debido a un accidente. Los dos vehiculos fueron reconstruidos de forma pre-
cisa (3.6 millones de puntos por cada objeto) usando el método de proyecciéon de franjas. Los dafios en
la estructura del vehiculo deformado fueron detectados y cuantificados a partir de las reconstrucciones.
Esta metodologia facilita la evaluacion de dafios, recreacién de accidentes, y verificacion de seguridad
automotriz. Este proyecto ofrece una herramienta accesible para fabricantes automotrices, talleres de
reparacion, y empresas de seguros. De esta forma, se estd contribuyendo en la adaptacion de la tecno-
logia de digitalizacién 3D, actualmente disponible para marcas consolidadas como Volvo, Tesla y Ferrari.
La democratizacion de la tecnologia de digitalizacion 3D contribuira a mejorar la seguridad vial y a re-
ducir los costos asociados con los dafios vehiculares, haciendo que la digitalizacién 3D sea accesible a
un publico mas amplio y promoviendo la eficiencia en la industria automotriz.
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puntos de 3.6 millones. Posteriormente, se com-



pard esta nube de puntos con otra de igual den-
sidad, correspondiente al auto chocado (el carro
modificado fisicamente para simular tres de los
choques mas frecuentes), utilizando algoritmos
desarrollados en MATLAB.

El modelo desarrollado ofrece una solucién
mas econdmica y versatil, aplicable a una amplia
variedad de sectores. La recopilacion de datos ha
permitido identificar diversas aplicaciones, como
la reconstruccion de choques con fines forenses,
regulacién de normativas de seguridad vehicular,
y el andlisis estructural de los dafios. Estos anali-
sis facilitan a los ingenieros la mejora de la es-
tructura de los vehiculos y la evaluacion de los
materiales utilizados en su fabricacidén.

En este documento se presentara la teoria basi-
ca necesaria para comprender el funcionamiento
del método, incluyendo conceptos fundamenta-
les como ecuaciones homogéneas, matrices trans-
puestas, triangulacion, homografias, matrices de
rotacion y traslacion, asi como métodos de cali-
bracién. También se describirdn las condiciones
esenciales para obtener resultados de alta preci-
sidn, se analizaran los resultados de las pruebas
realizadas y se discutirdn posibles mejoras y di-
recciones para futuras investigaciones derivadas
de este trabajo.

1.1 Antecedentes

La digitalizacion 3D en la industria automotriz
no es una novedad; sin embargo, sigue siendo
una tecnologia exclusiva debido a sus altos costos.
Marcas de prestigio como Volvo, BMW, Ferrari y
Tesla han innovado en sus centros de seguridad,
realizando simulaciones de choques para verificar
la seguridad de sus vehiculos. Este enfoque repre-
senta un avance significativo desde 1950, cuando
Samuel Alderson realizé el primer choque inten-
cional para evaluar la seguridad de las bolsas de
aire y la eyeccién de los asientos. Mas tarde, su
empresa, Humanetics, se convirtié en una de las
lideres en la verificacién de la seguridad automo-
triz.

Actualmente, estas pruebas han evolucionado
de manera considerable. Gracias al desarrollo de
tecnologias como la digitalizacién 3D, se ha crea-
do un modelo de datos e informacién que per-
mite simular estas pruebas con resultados impre-
sionantes. Los datos obtenidos a través de esta
digitalizacion y el software desarrollado pueden

determinar automdticamente la postura y movi-
miento del mufieco antes, durante y después del
choque, como se muestra en la Fig. 1. Aunque
existen factores dificiles de prever, los datos ob-
tenidos son altamente precisos.

Segtn O’Connor, el objetivo de Humanetics es
establecer un ecosistema de pruebas de seguri-
dad integral e interconectado. Este ecosistema
se alinea con las ultimas tendencias tecnologi-
cas, incluyendo la autonomia avanzada, vehicu-
los conectados, sistemas avanzados de asistencia
al conductor, y sistemas adaptativos como cintu-
rones de seguridad inteligentes. Ademads, incluye
modelos virtuales de humanos y mufiecos, asi co-
mo herramientas fisicas de seguridad pasiva [1].
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Figura 1: Simulacién digitalizada de siniestro por
la compafiia Humanetics.

2 Metodologia

2.1 Materiales y método

Se utilizé un sistema similar al sistema estéreo,
pero con una variacion clave: en lugar de dos
camaras, se reemplazé una de ellas por un pro-
yector. Este enfoque innovador permiti6 captar la
profundidad y los detalles del objeto de interés
con mayor precision. La Fig. 2 muestra el equipo
empleado en este proyecto: una webcam Logitech
C310 para la captura de imagenes, y un proyector
Epson W39 para la proyeccion de patrones.

Para el procesamiento, andlisis y visualizacién
de las imagenes, se utilizé el software MATLAB,
que facilité la captura de datos, reconstruccion
tridimensional, y alineacién de reconstruccio-
nes parciales. Este software ofrecié herramientas
avanzadas para la calibracién del sistema, ajuste
de parametros, y la interpretaciéon de los resulta-
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Figura 2: Arreglo experimental del sistema de proyeccion de franjas. (a) Webcam Logitech C310. (b)

Proyector Epson W39.

dos. Ademas, el uso combinado de la webcam y
el proyector permitié una alta precisién en la re-
construcciéon de modelos tridimensionales, crucial
para aplicaciones como la simulacion de impactos
y la evaluacién de dafios en objetos de estudio. La
cadmara ordinaria relaciona una escena en 3D con
una imagen en 2D, para lo cual cada punto de la
escena es considerado como un cono de luz.

2.2 Fundamentos

Para comprender la operacién del sistema pro-
puesto, la camara y el proyector deben ser consi-
derados sensores de direccion. Para este analisis, se
puede emplear el modelo pinhole, que es una sim-
plificacion de las camaras con lentes. En el mode-
lo pinhole, la camara es una caja negra con un
tnico orificio de tamarfio infinitesimal, en el cual
un punto en la escena es capturado una Unica vez
en el plano de imagen, como se muestra en la Fig.
3 [1]. Este modelo permite estimar los parame-
tros fundamentales de la camara, tales como la
distancia focal y el centro de la cAmara, por me-
dio de algoritmos simples. Sin embargo, surge un
problema de inversién en el eje X y en el eje Y
de la escena en el plano de imagen. Una solucién
consiste en reacomodar el plano imagen, de tal
forma que la distancia focal se mantiene y la ima-
gen capturada no resulta invertida.

Para fines del algebra utilizada en reconstruc-
ciones 3D, es conveniente comprender un nuevo
espacio que mapea cualquier vector en N dimen-
siones a uno en N+1 dimensiones. Esto nos per-
mite tratar con operaciones no lineales en el de-
sarrollo como si fuesen lineales. Indagando mas,
en el espacio Euclidiano R", una transformacion

Figura 3: Modelo pinhole de formacién de ima-
gen.

lineal representada por la multiplicacién de una
matriz a un vector, conserva los puntos en el infi-
nito.

Por otro lado, en el espacio Proyectivo, repre-
sentado como P, las coordenadas son aumenta-
das en una dimension, en lo que se conoce co-
mo coordenadas homogéneas. En este espacio,
cualquier transformacién es una transformacion
lineal aplicada a las coordenadas homogéneas.
Para ello, es necesaria la definicién de los opera-
dores de coordenadas homogéneas y de coorde-
nadas homogéneas inversas. Estos son los opera-
dores que nos permiten el mapeo del espacio de
Euclidiano al espacio proyectivo y viceversa, co-
mo se muestra en la Fig. 4 [2].

Los operadores descritos tienen ciertas propie-
dades de gran importancia. Una de ellas es el ele-
mento extra que se les agrega, conocido como la
escala, la cual puede ser cualquier niimero real. A
esta generalmente se le asigna el valor de s, de tal
forma que la relacién entre los operadores descri-



A N

el

-y

Figura 4: Mapeo entre el espacio Euclidiano y el
espacio proyectivo.

tos es
S
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donde S[.] es un operador que devuelve el tltimo
término de un vector.

De manera general, cualquier punto en un es-
pacio de N dimensiones sera mapeado en una
linea en el espacio de N+1 dimensiones, como
se muestra en la Fig. 5(a) [2]. Esto corrobora la
propiedad de invarianza de escala en las coorde-
nadas homogéneas, ya que, independientemente
del factor por el cual se multipliquen las coor-
denadas homogéneas, seguirdan representando la
misma linea.

Esto nos permitird obtener los parametros im-
portantes para la camara y el proyector desde la
perspectiva de los dispositivos. Para ello, es nece-
sario considerar un eje de referencia global, don-
de se tiene un vector p., que escapa desde el dis-
positivo, atraviesa el plano imagen y culmina en
un punto de la escena capturada p, como se mues-
tra en la Fig. 5(b) [3].

Como se menciona en [4], el vector p,. esta da-
do por

H Y] = = Hs[yl, (1)

pe=R"(p—1), 2)

donde R es una matriz 3x3 que representa la ro-
tacién de la cdmara respecto a los ejes de refe-
rencia globales, y t es el vector de traslacién que
describe la posicién del dispositivo. Una siguien-
te simplificaciéon es posible, haciendo uso de las
coordenadas homogéneas, tal que

Pec = L’H[,O}. 3

Notar que para esta ultima, se define la matriz de
parametros extrinsecos L = [RT, —~RTt]. En es-
te punto, es crucial la discretizacién del plano de
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Figura 5: (a) Coordenadas homogéneas del pun-
to x. (b) Perspectiva de cdmara.

imagen para su almacenamiento, procesamien-
to y visualizacién en dispositivos electrénicos.
Con este fin, se discretiza el plano de imagen en
un arreglo de pixeles. Dada la discretizacién del
plano imagen, consideramos ahora las coordena-
das pixel u = («, ), que se relacionaran con el
vector p. de la siguiente forma

p=HSZpe, 4

donde se le agrega una matriz de escala =, la
cual se define de la siguiente forma

Es = .. ) (5)
1

donde s es la distancia focal. Mas alla, esta matriz
tiene la funcién de cambiar la escala del objeto



en todas las direcciones, de tal forma que al ope-
rar con coordenadas homogéneas podemos utili-
zar operadores con escala 1.

Por otro lado, en Ec. (4) también se agrega la
matriz de muestreo S, la cual es de tamafio 3x3
y especifica el tamafio del pixel y el skew, siendo
este ultimo una distorsién geométrica que ocurre
cuando la cAmara no estd perfectamente alineada
con el plano del objeto que se esta capturando.
Se puede simplificar 4 sustituyendo por lo obte-
nido en 3 y definiendo la matriz de pardmetros
intrinsecos K como

p=HCH, ©)

donde
C = K[R", —R™1] @)

es una matriz 3x4 conocida como matriz de dispo-
sitivo [5].

Hasta el momento se han tratado con transfor-
maciones en el espacio proyectivo tal que P?—P3.
Sin embargo, para llegar a conocer las matrices de
parametros intrinsecos y extrinsecos, sera necesa-
rio considerar una transformacién especial llama-
da homografia. Esta se define en [6], como aquel
mapeo de P?—P? si y solo si existe una matriz 3x3
no singular denominada H, en donde se cumple
que h(z) = Hz, donde z € P2,

Esta transformacidon se consigue si todos los
puntos de la escena capturada se encuentran en
el mismo plano, es decir que sea coplanar, como
se muestra en la Fig. 6 [7]. En este caso, la rela-
cién entre las coordenadas fisicas y coordenadas
pixel esta expresada como

p=HGH, (8

donde G es la matriz que consigue una transfor-
macién homografia, la cual esta definida como

G = K[Fl,FQ, —RTt]. )

Observe que la definicion de la homografia se ba-
sa en suprimir la componente z de un punto ob-
servado; es decir, la 3ra fila de la matriz de ro-
tacién es omitida. La matriz homografia es no-
singular, lo que implica que es invertible. Esto es
especialmente conveniente, ya que (6) se podria
expresar de la siguiente forma

p=H G H[u]]. (10)

Figura 6: Transformacion homografia.

Tal y como es mencionado en [8], mediante el
método de transformacion lineal directa es posi-
ble hacer una estimacion de una homografia dado
que tengamos correspondencias entre los puntos
py u. Siendo que la matriz homografia esta dada
por

g11 912 913 g1
G= g1 92 93| =19, 11
g31 932 933 ﬁg

donde se considera la particién en filas de la ma-
triz. También se tiene la particularidad que el
término g3 3 tiene el valor de la escala. Toman-
do en cuenta la definicion en (1) aplicada en (8)
tenemos

_ L [
= e | 09

al reacomodar y desarollar obtenemos

93 Hlplp = B%ZEH : (13)

Esta ecuacion se puede reacomodar de forma tal
que se le puede aplicar la resolucion por minimos
cuadrados, de la forma Ag = 0,,. Es importan-
te notar que m representa el nimero de corres-
pondencias utilizadas para la estimacién y g es
una matriz 9x1. La matriz A se construye de la
siguiente forma

[ Hp])" 0F —paH[p]" ]

H[Pm]T OST _N:cmH[pm]T

oF  Hpl" )" [ P

0;{ H[Pm]T */lym,H[Pm]T_



Figura 7: (Izq.) Patrén de calibracién amarillo impreso colocado sobre un plano de referencia, y patron
cian proyectado con el proyector del sistema. (Dcha.) Aplicaciéon Checkerboard Detector.

Dado que g tiene 8 variables desconocidas y
que cada correspondencia te otorga dos ecuacio-
nes, necesitamos al menos 4 correspondencias pa-
ra obtener la homografia deseada. Esta estima-
cién nos funcionard para la calibracion del siste-
ma.

2.3 Procedimiento experimental

2.3.1 Calibracion

La parte experimental, donde se comenzo a tra-
bajar de manera mas practica y menos teorica,
inicié con el proceso de calibracion. Este proce-
so marcé un punto de inflexion entre la teoria y
la aplicacién de los métodos estudiados desde el
inicio de la estancia. Para la calibracién, nos basa-
mos en un sistema estéreo, pero en lugar de uti-
lizar dos cdmaras, una de ellas fue reemplazada
por un proyector. Para este proceso, se optd por
una calibracion simultanea de la camara y el pro-
yector, siguiendo la metodologia expuesta en [9].
Para ello, se situaron los dispositivos de manera
que se obtuviera una vista superior de un patrén
de calibracion, con una distancia aproximada de
10 cm entre ellos, tomando como referencia el
plano z. La camara se colocd a aproximadamente
120 grados, y el proyector a 70 grados del mis-
mo plano, lo que proporcioné un amplio espectro
de visién para la cdmara, permitiéndole capturar
gran parte del objeto.

Para el patrén de calibracidn, utilizamos un for-
mato impreso sobre una tablilla de unicel, similar
al patrén de un tablero de ajedrez de 7x10 de co-
lor amarillo. Posteriormente, se proyectd sobre el
mismo un patrén igual pero de color cian con di-
ferente proporcién, como se muestra en la Fig.
7(1zda).

Una vez colocado nuestro patrén de calibra-
cién, es importante desactivar las configuraciones
automaticas de la camara, ya que parametros co-
mo brillo, contraste, saturaciéon y enfoque seran
ajustados manualmente utilizando la aplicacién
Image Acquisition de MATLAB.

Después de ajustar manualmente estos parame-
tros y asegurarnos de que tenemos una buena vi-
sualizacion del patrén de calibracién, comenza-
mos a tomar fotografias del mismo desde varias
perspectivas. Es crucial no mover ni la camara ni
el proyector; solo se debe mover el tablero de cali-
bracién, agregando algunas inclinaciones y varia-
ciones de altura y posicién para lograr una correc-
ta calibracién. Se recomienda que la ultima foto-
grafia capture la posicion final del tablero, que es
donde se colocara el objeto para la digitalizacion.
En nuestro caso, el tablero se colocé sobre una
superficie plana y se fijo con cinta adhesiva a la
mesa para evitar movimientos que pudieran des-
calibrar el sistema.

Después de tomar 13 fotografias para la cali-
braciéon de nuestro sistema, utilizamos la aplica-
cién de MATLAB Checkerboard Detector para
encontrar los parametros intrinsecos y extrinse-
cos, ver Fig. 7(Dcha). Estas funciones desarrolla-
das nos permitieron determinar la posicién tan-
to de la cdmara como del proyector respecto al
plano de referencia. Aunque no logramos obtener
la precision deseada en todas las mediciones, el
proceso permitié ajustar y refinar la configuracion
para mejorar los resultados.

Mediante el uso de estas herramientas y técni-
cas, se pudo avanzar significativamente en la cali-
bracion del sistema, asegurando que la digitaliza-
cién tridimensional fuera lo mds precisa posible.



Figura 9: (a) Sistema experimental de proyeccién de franjas calibrado. (b) Caras digitalizadas de los
objetos de prueba. (c) Seleccién manual de puntos para la unién de vistas. (d) Unién de nube de puntos.

Este procedimiento es fundamental para garanti-
zar la exactitud de las mediciones y la calidad de
los datos obtenidos durante el proceso de digita-
lizacion.

2.3.2 Proyeccion de Franjas

Una vez calibrado nuestro sistema, comenza-
mos a practicar con la reconstrucciéon de multi-
ples objetos. Al principio, practicamos la digita-
lizacién con diferentes objetos con textura y de
diferente forma para perfeccionar la técnica. Nos
dimos cuenta de que era importante no generar
ninguna interferencia en nuestro sistema camara-
proyector.

Para lograr una reconstruccién completa y de-
tallada, tomamos cuatro vistas principales del ob-
jeto y dos vistas auxiliares, ver Fig. 8. Estas vistas
adicionales nos ayudaron a conectar los puntos y
asegurar una representacion precisa de todas las
perspectivas del objeto.

La proyeccion de franjas se realizé considera-
mos un corrimiento de fase de L = 4 y un in-
cremento de rejillas de N.S = 24, lo que resultd

en un total de 192 fotografias, ver Fig. 9(a). Este
enfoque nos permitio obtener una perspectiva del
objeto de excelente calidad, asegurando que to-
dos los detalles fueran capturados con precision.

Habiendo obtenido la fase desenvuelta, es po-
sible hacer una triangulacién. Este es un método
geométrico y matematico empleado para calcular
las posiciones 3D de un punto en el espacio uti-
lizando sus proyecciones en dos o mas imagenes
planas. Para este método existen varios enfoques,
en este caso en particular usamos el método de
interseccion linea a linea [4]. Para dos puntos de
observacién, un punto de la escena 3D estd dado
por

pi = ti + N\id;, (15)

donde d; = RiKi_lH[m], dado ¢ = 1,2 debido a
la tinica presencia de una camara y un proyector,
después se igualan los puntos. Lo que se busca
obtener son las constantes ), para ello resolvemos
un sistema de ecuaciones, de la forma

L= A'(ty - t1), (16)



donde L contiene las constantes )\, y [.]T refiere a
la inversa de Moore-Penrose, de esta forma asegu-
rando que se obtiene la mejor aproximacion posi-
ble a la solucién del sistema de ecuaciones.

Por ultimo paso, obtenemos la nube de puntos
para la vista deseada, usando el siguiente modelo
matematico:

t1 + to + Ad1 + Aado
p= 5 .

(17)

El resultado obtenido fueron las nubes de pun-
tos que representan las reconstrucciones 3D de
los objetos, como se muestra en la Fig. 9(b).

2.3.3 Uniodn de Vistas

Después de obtener reconstrucciones parciales,
se debe obtener correspondencias puntuales en-
tre las nubes de puntos. Se debe tomar en cuenta
que todo movimiento de un cuerpo rigido esta da-
do por una matriz de rotacién y un vector de tras-
lacion, por lo cual es cuestion de encontrar estos
parametros. En este proyecto se utilizdé un algo-
ritmo de optimizacién al cual se le introdujeron
20 puntos seleccionados manualmente por vista,
ver Fig. 9(c). El proceso de ajuste entregé como
resultado la matriz de rotacidn y el vector de tras-
laciéon necesario para unir las nubes de puntos,
ver Fig. 9(d). Este mismo proceso se realizé para
la reconstruccion del carro chocado y del original.

2.3.4 Diseno de muestreo

El tamafio de muestra de 192 fotos por vista, re-
sulté en un total de 1152 fotografias al capturar
seis vistas. Este enfoque detallado permitié cap-
turar hasta el mas minimo detalle del vehiculo.
La intencion es que, al escalar esta metodologia a
un automdvil real, se puedan apreciar incluso los
detalles mas pequefios, como los golpes al abrir
la puerta, los impactos de pequefias piedras en
la carretera y las ligeras abolladuras provocadas
por el granizo. Esto proporciona una perspectiva
completa y precisa del automévil, asegurando que
cada detalle se registre con gran fidelidad.

3 Resultados

La Figura 10(Izda) muestra el sistema de digi-
talizacién capturando una vista del carro de re-
ferencia. Observamos que el dngulo y la posi-
cién de la camara y el proyector eran cruciales.
La digitalizaciéon completa de cada objeto se ob-
tuvo uniendo las reconstrucciones parciales em-

parejando puntos clave de correspondencia con
el procedimiento descrito anteriormente. La Fig.
10(Izda) muestra las reconstrucciones completas
del carro de referencia y el carro chocado.

Para finalizar la comparacion de la nube de
puntos, utilizamos nuestro algoritmo basado en
el método Iterative Closest Point (ICP). Compa-
rando punto por punto entre los 3.6 millones de
puntos obtenidos. La Fig. 11 muestra el mapa de
deformacion obtenido. Esta visualizacién facilita
la identificacion de las zonas de impacto y la mag-
nitud del dafio. En particular, los puntos rojos in-
dican deformaciones significativas, mientras que
los puntos azules confirman las dreas que perma-
necieron intactas.

El analisis detallado de la deformacion nos pro-
porciona informacion valiosa para entender me-
jor la magnitud del impacto y las zonas mas afec-
tadas del vehiculo. Este tipo de modelado y com-
paracidn es crucial para la evaluacion de dafios en
vehiculos siniestrados, ya que ofrece una visuali-
zacidn precisa y detallada del estado del vehiculo
tras un accidente.

4 Discusion de resultados

El andlisis de deformacién de vehiculos sinies-
trados mediante la proyeccion en la evaluacién de
dafios vehiculares resultd ser grato para su uso. La
digitalizacion 3D del vehiculo utilizando un ca-
rro de control remoto nos permitié capturar una
representacion digital del vehiculo. La técnica de
proyeccion de franjas proporcioné datos precisos
sobre las deformaciones y dafios en la estructura
del vehiculo. Con 3.6 millones de puntos en ca-
da nube de puntos, logramos una resolucion en el
modelo para detectar incluso las deformaciones
mas pequenas.

La implementacién del algoritmo ICP (Iterati-
ve Closest Point) permitié comparar las nubes de
puntos del vehiculo siniestrado con las del vehicu-
lo en su estado original. Esta comparaciéon pun-
to por punto permitié visualizar claramente las
areas dafladas (marcadas en rojo) y las areas no
afectadas (marcadas en azul). La precision en la
correspondencia de puntos entre las nubes fue
crucial para identificar las deformaciones.

Esta aplicacién es sustancial para multiples
usos, incluyendo la evaluacién de seguros, repa-
raciones y estudios de seguridad vehicular. La ca-
pacidad de detectar y medir dafios con alta pre-



Figura 10: (Izda.) Sistema de digitalizacién de los objetos. (Dcha.) Digitalizacion de los carros de refe-

rencia y chocado.

Figura 11: Vistas del mapa de diferencia entre el
carro de referencia y el carro chocado.

cisiéon puede mejorar significativamente la toma
de decisiones en estos campos. Ademas, la me-
todologia desarrollada puede adaptarse para ha-
cer accesible esta tecnologia a un mercado mas
amplio y econdémico. Esto puede promover una
mejor evaluacion y reconstruccién de accidentes,
contribuyendo a mejorar la seguridad vial y redu-
cir los costos asociados con los dafios vehiculares.

Existen algunas limitaciones que deben ser con-

sideradas. La precision del modelado depende en
gran medida de la calibracién del equipo y de las
condiciones de captura (iluminacién, angulos, re-
solucion, etc.). Ademas, el algoritmo ICP puede
beneficiarse de mejoras en términos de velocidad
y precision en la correspondencia de puntos.
Para futuras investigaciones, se recomienda ex-
plorar técnicas adicionales de procesamiento de
imagenes y modelado 3D que puedan comple-
mentar el uso de homografias y proyeccién de
luz. Asimismo, la integracién de inteligencia ar-
tificial y aprendizaje automatico podria optimizar
el proceso de comparacion de nubes de puntos,
haciendo el anadlisis mas rapido y preciso.

5 Conclusiones

Durante la estancia del verano de investiga-
cién del programa Delfin en el CITEDI-IPN, se ad-
quirieron conocimientos tedricos y practicos so-
bre la digitalizacion 3D. La técnica de proyeccion
de franjas es una herramienta eficaz para la eva-
luacion de dafios vehiculares, proporcionando re-
construcciones detalladas y precisas.

La implementacién de esta tecnologia a un mo-
delo mas accesible y econdmico es un gran resul-
tado. El desarrollo de una herramienta para fa-
bricantes de automéviles, talleres de reparacion
y empresas de seguros mejorara la evaluacion y
reparacion de dafos vehiculares, promoviendo la
tecnologia de digitalizacion 3D. De esta manera,
se puede procesar la evaluacion de un vehiculo
siniestrado y hacer mas precisos los presupuestos
de costos de reparacion.



En resumen, este proyecto ha demostrado la
viabilidad de adaptar tecnologias avanzadas pa-
ra un uso mas amplio. También ha sentado las
bases para el campo de la digitalizacién 3D en la
industria automotriz. Adicionalmente, el proyec-
to facilita la deteccion de fallas estructurales po-
tenciales. Esto significa que, ademas de realizar
pruebas en vehiculos siniestrados, se podria eva-
luar de manera rutinaria y a bajo costo cualquier
vehiculo para identificar fallas potenciales antes
de que ocurran. Asi, este proyecto podria contri-
buir a la mejora de la seguridad vial y a la reduc-
cion de los costos asociados con la reparacion de
dafios vehiculares cuando estos ya han ocurrido.
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