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Visión computacional para instrumentación y na-
vegación asistida usando métodos opto-digitales

Resumen

Navegación visual es un problema de investigación abierto que se puede
abordar usando métodos de visión por computadora. Cada d́ıa, las aplicacio-
nes basadas en visión son más comunes; por ejemplo, la navegación autónoma,
localización de objetos, seguidor de rutas y construcciones de mapa tridimen-
sional, entre otras. Los sistemas opto-digitales poseen grandes ventajas para el
desarrollo de aplicaciones de visión por computadora. Su configuración integra
un sistema óptico con un medio de adquisición de imágenes y procesamiento
digital. En la actualidad, la captura de imágenes se realiza de forma rápida em-
pleando cámaras digitales. También, las computadoras digitales permiten que el
procesamiento de las imágenes capturadas pueda realizarse a altas velocidades
y de forma mucho más flexible. En este trabajo de tesis se propone un método
opto-digital para la estimación de posición y orientación de un robot móvil te-
rrestre. Primeramente, se realiza una detección de contornos en la escena. Esta
información permite realizar una detección de ĺıneas de carril, a través de la
transformada de Hough. Posteriormente, se determina la posición y orientación
del veh́ıculo a partir de las ĺıneas detectadas. Se utilizan máscaras digitales para
limitar la información no útil que interfiere a la detección de ĺıneas. Asimismo,
se realiza una implementación paralela de los algoritmos en desarrollados para
reducir el tiempo de respuesta en el procesamiento digital de datos. El método
propuesto es evaluado a través de criterios de desempeño objetivos al procesar
secuencias de video tomadas del mundo real. Los resultados obtenidos mostra-
ron que lo métodos opto-digitales son factibles para aplicaciones de navegación
visual e instrumentación óptica en veh́ıculos reales.

Palabras clave : Estimación de posición y orientación, detección de ca-
rril, navegación visual, homograf́ıa, transformación geométrica, corrección de
distorsión, transformada Hough, cámara pinhole, calibración de cámara, visión
computacional.
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Computer vision for instrumentation and assisted
navigation using opto-digital methods

Abstract

Visual navigation is an open research problem that can be addressed using
computer vision methods. Computer vision applications are more commons in
everyday life such as autonomous navigation, object localization, path follower,
map construction, and amongst others. Opto-digital systems offer great advan-
tages for the development of computer vision applications. Typical opto-digital
configurations integrate an optical system with a digital image acquisition and
processing unit. Nowadays, digital cameras can capture images at high speeds.
On the other hand, digital computers allow the processing of the acquired ima-
ges to be performed at high speeds in a much more flexible way. In this work, an
opto-digital method to estimate the position and orientation of a mobile robot
is proposed. First, an edge detection method is used to extract the edges of
the scene. This information is useful to detect lane lines with Hough transform.
A binary window mask limits non-useful information that interferes with line
detection were used. Additionally, a parallel implementation of the developed
algorithms were used to speed up the digital processing time. The efficiency of
the proposed method is evaluated through an objective performance criteria by
processing video sequences taken from the real world. The experimental results
showed that opto-digital methods are feasible for visual navigation and optical
instrumentation applications.

Keywords: Position and orientation estimation, lane detection, visual navi-
gation, homography, geometric transformation, lens distortion correction, Hough
transform, pinhole camera, camera alibration, computer vision.
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terrestre. (a) Franja en dirección x. (b) Franja en dirección y. . . 42
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ventana y la máscara Gaussiana. . . . . . . . . . . . . . . . . . . 45

3.12. Evaluación del funcionamiento del algoritmo propuesto en ĺıneas
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to en ĺıneas de carril no visibles. (a)-(e) Predicción de ĺıneas de
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torsión corregida. (k)-(o) Picos de intensidad máxima limitado
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Capı́tulo 1
Introducción

1.1. Visión por computadora

En la actualidad, los sistemas de visión por computadora están impulsando
el desarrollo de nuevas tecnoloǵıas para realizar diversos tipos de aplicaciones en
ingenieŕıa, educación, medicina, y entretenimiento entre otras [1–4]. El estudio
y diseño de nuevos métodos de visión computacional es un tema de investiga-
ción actual y de gran relevancia debido a su impacto en la sociedad [5]. Algunos
ejemplos de aplicación como la inspección de componentes electrónicos, digita-
lización tridimensional de objetos, navegación visual, análisis de irregularida-
des en tejido, realidad aumentada, reconocimiento, y análisis biométrico, entre
otros [6–9]. Los sistemas de visión tienen como finalidad obtener información
de un entorno tridimensional como lo hace el sistema visual humano [10]. Para
alcanzar este comportamiento resulta muy complejo, los resultados deben ser
mejor en comparación al sistema de visión humano [11,12].

En la actualidad, los equipos digitales han mejorado considerablemente en
los últimos años. Las cámaras digitales alcanzan altos niveles de resolución con
sensibilidad a una amplia gama de colores. Los niveles de nitidez en las imágenes
rebasan lo que el ojo humano puede distinguir. Sin embargo, para las compu-
tadoras digitales, las imágenes son simplemente arreglos de ṕıxeles o valores
numéricos de intensidad que representan colores en cada ṕıxel. Por esta razón,
desde el punto de vista computacional, comprender la información contenida en
imágenes es un problema que se ha tratado de resolver desde hace décadas [10].

Los modelos de aprendizaje marcaron el inicio de trabajos sobre visión por
computadora [13, 14]. Los resultados que obtuvieron propició un interés cre-
ciente por este tema de investigación y diversos enfoques se han desarrollado y
reportado en la literatura cient́ıfica [15–17]. A pesar de los importantes avances
realizados en el campo de visión computacional, todav́ıa permanece abierto un
numeroso considerable de problemas. Por ejemplo, reducir los tiempos de res-
puesta de los sistemas, mejorar los niveles de exactitud, reducir el consumo de
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2 CAPÍTULO 1. INTRODUCCIÓN

Figura 1.1: Posición y orientación en sistemas móviles para la navegación asis-
tida2. (a) Un veh́ıculo aéreo presenta seis grados de libertad para definir su
posición y orientación en el espacio tridimensional. (b) Un veh́ıculo terrestre
presenta tres grados de libertad para definir su posición y orientación en el
plano del piso. (c) Un veh́ıculo terrestre restringido a moverse a lo largo de
un carril solo presenta dos grados de libertad: la posición x perpendicular a la
dirección de desplazamiento y el ángulo φ alrededor del eje vertical.

enerǵıa, reducir el tamaño de los equipos, y simplificar los procesos de operación
para facilidad de uso, entre otros.

1.2. Instrumentación para navegación asistida

La instrumentación se encarga de realizar mediciones f́ısicas mediante el
uso de sensores, permiten monitorear y retroalimentar el sistema de navega-
ción [18–21]. En general, para robots móviles, la navegación asistida requiere
mediciones de proximidad (distancia), posición (x, y, z), orientación (cabeceo,
alabeo, guiñada), y velocidad (Vx, Vy, Vz), entre otras [22], tal como se muestra
en la figura 1.1(a). En particular, para un veh́ıculo terrestre, las variables de
interés se reducen a la posición (x, y) en el plano de referencia, y la orientación
definida por la rotación alrededor del eje z (guiñada), como se muestra en la
figura 1.1(b).

En este trabajo de tesis se aborda como problema de estudio, la navegación
visual de un robot móvil terrestre restringido a desplazarse a lo largo de un carril,
como se ilustra en la figura 1.1(c). De esta forma, el problema de estimación
de posición y orientación del veh́ıculo se reduce a estimar la coordenada x, y la
orientación dada por el ángulo φ alrededor del eje vertical.

En la literatura se han propuesto diferentes enfoques para extraer infor-
mación útil para la navegación empleando visión por computadora. Por ejem-
plo, se han propuesto métodos de estimación de distancias de objetos alrede-
dor del veh́ıculo [23, 24], mapas de entrenamiento del sistema [25], planifica-
ción de rutas [25, 26], y reconstrucción virtual del espacio tridimensional, entre

2Imágenes tomadas de
http://www.chrobotics.com/library/understanding-euler-angles

https://www.researchgate.net/figure/Vehicle-with-coordinate-system_fig1_

311268794
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otras [27–29]. En este trabajo de tesis, se propone un método de navegación vi-
sual empleando transformaciones proyectivas y la transformada de Hough para
la detección de ĺıneas de carril. Los resultados obtenidos en esta tesis muestran
que es posible determinar la posición y orientación del veh́ıculo empleando las
ĺıneas de carril como fuente de información.

1.3. Sistemas opto-digitales

La óptica es una rama de la f́ısica que se encarga del estudio de los fenómenos
en los que interviene la luz [30,31]. Los avances de la óptica se vieron motivados
por la necesidad de aprovechar información visual. Los primeros avances con-
sistieron en el análisis y aplicación de sistemas puramente ópticos; por ejemplo,
holograf́ıa, microscoṕıa, e interferencia láser, entre otros. Incluso, la captura
de imágenes se realizaba con cámaras analógicas, donde las distribuciones de
intensidad eran registradas empleando peĺıcula fotográfica.

Los avances recientes en sensores electrónicos y computadoras digitales han
permitido incrementar la eficiencia de los sistemas ópticos. En la actualidad,
la captura de imágenes se realiza de forma rápida empleando cámaras digita-
les. También, las computadoras digitales permiten que el procesamiento de las
imágenes capturadas pueda realizarse en altas velocidades y de forma mucho
más flexible.

Los sistemas ópticos tienen configuraciones que incluyen sensores, lentes y
filtros que permiten procesar señales análogas usando las propiedades de la
luz [32–34]. Por otro lado, los sistemas digitales convierten las señales análogas a
digital para realizar procesamiento de imágenes a través de secuencias espećıficas
de instrucciones [35, 36]. La integración de un sistema óptico con un medio de
adquisición y procesamiento digital dio origen a los sistemas opto-digitales.

En este trabajo de tesis, aprovechamos las ventajas de los sistemas opto-
digitales para el desarrollo de un método de estimación de posición y orientación
de un veh́ıculo móvil terrestre desplazándose a lo largo de un carril. En la parte
óptica, consideramos las propiedades geométricas de la cámara y el proceso ópti-
co de formación de imagen. Respecto a la parte digital, se proponen algoritmos
viables para ser implementados en plataformas computacionales de alto desem-
peño (GPU por sus siglas en inglés Graphics Processing Unit), explotando la
capacidad del paralelismo masivo. El método propuesto es evaluado procesando
secuencias de video tomadas del mundo real. De los resultados obtenidos, se
observa que el método propuesto puede ser útil para proporcionar las señales de
posición y orientación requeridas por el controlador de un robot móvil.

El contenido del presente documento de tesis se organiza de la siguiente for-
ma. En el caṕıtulo 2 se analizan los principios teóricos utilizados para el desa-
rrollo del método de detección de carril y estimación de posición y orientación
del veh́ıculo. En el caṕıtulo 3 se presenta la plataforma experimental construi-
da, los detalles de la implementación del método propuesto, y la calibración del
sistema. Este caṕıtulo finaliza con la descripción de los resultados obtenidos en
la detección de carril y estimación de pose empleando secuencias de video del



4 CAPÍTULO 1. INTRODUCCIÓN

mundo real. En el caṕıtulo 4 se presentan las conclusiones de la presente tesis y
trabajo a futuro.

En el trabajo de investigación desarrollado en esta tesis, se analizaron di-
ferentes enfoques reportado en la literatura cient́ıfica para visión por compu-
tadora. En el apéndice A se presenta la estimación de parámetros del sistema
usando mı́nimos cuadrados recursivos con factor de olvido. Los apéndices B, y
C presentan el método de rectificación de imágenes, y segunda transformada de
Hough, respectivamente. En estos apéndices se describen los aspectos básicos
de la implementación de estos métodos alternativos aśı como las desventajas
restrictivas por las que no fueron usados en este trabajo de tesis.

1.4. Objetivos

El objetivo general y los objetivos espećıficos de este trabajo de tesis, se
presentan a continuación:

1.4.1. Objetivo general

Desarrollo de técnicas de visión computacional optimizando métricas objeti-
vas para aplicaciones de instrumentación óptica y navegación asistida empleando
métodos opto-digitales.

1.4.2. Objetivos espećıficos

Estimar la posición y orientación de un robot móvil terrestre usando como
referencia las ĺıneas de carril en la pista.

Implementar el algoritmo propuesto de forma eficiente en una plataforma
computacional de alto rendimiento.

Cuantificar el desempeño del sistema propuesto utilizando medidas de
desempeño objetivas a través de simulaciones por computadora.

Verificar el funcionamiento del método propuesto empleando secuencias
de video del mundo real.

1.5. Contribuciones

Los resultados derivados de este trabajo de tesis consisten en la publicación
de un art́ıculo cient́ıfico, cuatro memorias de congreso, y un software de proce-
samiento de patrones de franjas. Los detalles de estos desarrollos se enlistan a
continuación.

Rigoberto Juarez-Salazar, Alejandra Giron, Juan Zheng, and Victor H.
Diaz-Ramirez, “Key concepts for phase-to-coordinate conversion in fringe
projection systems,” Appl. Opt. 58, 4828-4834 (20 June 2019).
DOI: https://doi.org/10.1364/AO.58.004828.
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Capı́tulo 2
Marco teórico

2.1. Modelo de cámara

Las cámaras fotográficas son dispositivos complejos que involucran la ope-
ración conjunta de un sensor foto-sensible y un sistema de formación de imagen
(lente compuesta). El sistema de formación de imagen está integrado por ele-
mentos ópticos, electrónicos y mecánicos que incluyen lentes, obturadores, filtros
y actuadores diseñados para generar imágenes de alta calidad.

En la figura 2.1(a) se representa el proceso de formación de imagen usando
una lente compuesta. El diseño de algoritmos de procesamiento de datos a partir
del modelo matemático de una lente compuesta puede resultar compleja [37,38].

El proceso de formación de imagen puede describirse completamente supo-
niendo que el sistema de formación de imagen consiste en una lente simple como
se muestra en la figura 2.1(b). El modelo matemático resultante será suficiente
para incluir efectos tales como desenfoque y distorsión radial.

Los algoritmos de procesamiento de imágenes pueden simplificarse aún más
cuando el efecto de desenfoque y la distorsión radial son despreciables. En este
caso, se puede considerar el modelo de una cámara pinhole como se muestra en
la figura 2.1(c) [15].

El proceso de formación de imagen usando el modelo de cámara pinhole
es bastante simple. Este modelo integra la información sobre los parámetros
extŕınsecos (posición y orientación) de la cámara y los parámetros intŕınse-
cos tales como la longitud focal, el centro óptico, oblicuidad y tamaño de los
ṕıxeles [39]. Usando el modelo de cámara pinhole, un punto p en el espacio tri-
dimensional observado por la cámara, se detecta como un punto µ en el plano
imagen como

µ = H−1[CH[p]], (2.1)

donde C = K[RT ,−RT t] es una matriz de tamaño 4×3 que contiene los paráme-
tros de la cámara, K es la matriz de parámetros intŕınsecos, la matriz R y el

7



8 CAPÍTULO 2. MARCO TEÓRICO

Figura 2.1: Diferentes configuraciones para el proceso de formación de imágenes.
(a) Lente convencional. (b) Lente simple. (c) Cámara pinhole.

vector t definen la orientación y posición de la cámara, respectivamente, [·]T
indica transposición, y H[·] es el operador de coordenadas homogéneas.

El operador de coordenadas homogéneas permite realizar operaciones geométri-
cas cambiando del espacio cartesiano al espacio homogéneo. De esta forma, las
transformaciones de proyección geométricas, que son no-lineales en el espacio
cartesiano, se realizan de forma simple a través de operaciones lineales. Para
realizar proyecciones geométricas, el operador H agrega una dimensión adicio-
nal al vector dado; por ejemplo, un punto p = [x, y, z], sus correspondientes
coordenadas homogéneas son

H[p] =

[
p
1

]
= q. (2.2)

Para regresar al espacio cartesiano original, el operador H−1 reduce una dimen-
sión al vector q y es dividido por el último elemento; espećıficamente,

H−1[q] =
1

s
p, (2.3)

donde s es el último elemento de q.

2.1.1. Homograf́ıas

Existe un caso particular de puntos que pertenecen a un plano que se en-
cuentra en el espacio tridimensional [40]. Los puntos ρ del plano son observados
y registrados en el plano imagen como puntos µ, como se observa en la figu-
ra 2.1.1. Dado este caso, los puntos p (del espacio tridimensional) se pueden
parametrizar usando los puntos ρ (del plano bidimensional) como

p = [q1, q2, s]H[ρ], (2.4)

donde q1 y q2 son vectores ortogonales que definen la orientación del plano
observado, y s representa la traslación del plano observado. Utilizando este
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Figura 2.2: Proceso de formación de imágenes. (a) Caso general en donde se
observan puntos p en el espacio tridimensional. (b) Caso particular en donde
los puntos p son coplanares a los puntos ρ.

caso, en la Ec. (2.1) se reduce la matriz C de la cámara pinhole a una matriz G
de tamaño 3× 3 como

µ = H−1[GH[ρ]], (2.5)

donde G es una matriz conocida como homograf́ıa y está dada por

G = KRT [q1, q2, s− t]. (2.6)

Esta matriz puede construirse usando solamente los parámetros de posición y
orientación de la cámara [41]. La homograf́ıa se puede describir como una trans-
formación geométrica que relaciona los puntos del plano imagen y los puntos
del plano de referencia. Esta matriz es de gran importancia en aplicaciones ta-
les como calibración de cámaras, corrección de perspectiva, y construcción de
imágenes panorámicas, entre otras [15,40,42]. A continuación, se mostrarán tres
métodos de estimación de homograf́ıas, basados en puntos de correspondencia,
ĺıneas en la imagen, y esquinas de cuadriláteros.

2.1.2. Estimación de homograf́ıas usando puntos de co-
rrespondencia

Una homograf́ıa se representa por una matriz de tamaño 3× 3 dada por

G =

g11 g12 g13

g21 g22 g23

g31 g32 g33

 =

ḡT1ḡT2
ḡT3

 , (2.7)

donde ḡT1 , ḡT2 y ḡT3 son los renglones de la matriz G. Usando la Ec. (2.5) y por
definición de H−1 se obtiene

µ =
1

ḡT3H[ρ]

[
ḡT1H[ρ]
ḡT2H[ρ]

]
. (2.8)
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Despejando el denominador de la Ec. (2.8) se forma el siguiente sistema de
ecuaciones lineales:

ḡT3H[ρ]µx = ḡT1H[ρ], (2.9)

ḡT3H[ρ]µy = ḡT2H[ρ].

Este sistema de ecuaciones lineales se puede escribir en forma matricial como[
H[ρ]T 0T

3 −µxH[ρ]T

0T3 H[ρ] −µyH[ρ]T

]
︸ ︷︷ ︸

A

ḡ1

ḡ2

ḡ3


︸ ︷︷ ︸

g

=

[
0
0

]
. (2.10)

La matriz homograf́ıa tiene nueve elementos a determinar; sin embargo, solo
existen ocho incógnitas porque las homograf́ıas son únicas excepto escala. Por
otro lado, considerando la Ec. (2.10) se concluye que por cada correspondencia
de puntos (µ, ρ) se obtienen dos ecuaciones. Por lo tanto, se necesitan al menos
cuatro puntos de correspondencia para estimar una matriz homograf́ıa. Con n
puntos de correspondencia, se obtiene la siguiente ecuación matricial:

A1

A2

A3

A4

...
An


︸ ︷︷ ︸

A

g =



02

02

02

02

...
02


︸ ︷︷ ︸
02n

, (2.11)

donde Ak representa las dos ecuaciones correspondientes a la Ec. 2.10 para un
punto de correspondencia, y 02 es un vector de ceros de tamaño 2 × 1. Se usa
descomposición en valores singulares para encontrar el vector g que minimiza
‖Ag‖. Teniendo G, se puede corregir la distorsión generada por la perspectiva
respecto al objeto de interés utilizando la Ec. (2.5) como

ρ = H−1[G−1H[µ]]. (2.12)

Una desventaja de este proceso de estimación de homograf́ıas es la necesidad
de proporcionar tantos puntos µ del plano imagen como puntos ρ del plano
de referencia. Por ejemplo, para escanear documentos, los usuarios no cuentan
con información del plano de referencia (puntos ρ). Por consecuencia, no hay
información a priori para conocer la relación del aspecto del documento. Para
este tipo de aplicaciones se propone un método de estimación de homograf́ıas
donde las coordenadas ρ del plano de referencia no son requeridas.

2.1.3. Estimación de homograf́ıas usando ĺıneas

Una ĺınea recta se puede expresa matemáticamente como

y = mx+ b, (2.13)
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donde m es la pendiente de la recta, y b es la intersección con el eje vertical.
Observe que la ecuación de la recta se puede reescribir como mx − y + b = 0.
En general, para tres constantes cualquiera a, b, y c (excepto a = b = c = 0), la
recta puede escribirse como

ax+ by + c = 0. (2.14)

Esta ecuación toma una forma simple cuando se usan coordenadas homogéneas.
Espećıficamente, las ĺıneas rectas pueden ser representadas por un vector como

` =

ab
c

 . (2.15)

De esta forma, de la Ec. (2.14), se observa que los puntos µ = [x, y]T que
pertenecen a la recta parametrizada por el vector ` satisfacen

`TH[µ] = 0. (2.16)

Si tenemos n ĺıneas, `1, `2, · · · , `n, que intersectan en el punto µ, entonces se
puede construir el siguiente sistema de ecuaciones

`T1
`T2
...

`Tn

H[µ] =


0
0
...
0

 . (2.17)

El punto de intersección µ de las ĺıneas se encuentra resolviendo la Ec.
(2.17) usando el método de descomposición en valores singulares. Este enfoque
se puede aplicar para encontrar los puntos µn necesarios para realizar corrección
de perspectiva usando el método descrito en la subsección anterior.

2.1.4. Estimación de homograf́ıas usando cuadriláteros

La matriz homograf́ıa se puede representar como

G =

g11 g12 g13

g21 g22 g23

g31 g32 g33

 =
[
g1 g2 g3

]
, (2.18)

donde g1, g2 y g3 son las columnas de la matriz G. Observamos que las columnas
de G corresponden a las coordenadas homogéneas de las imágenes de puntos e1,
e2, y e3 dados por

g1 = GH[e1],

g2 = GH[e2],

g3 = GH[e3],

(2.19)
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Figura 2.3: Los puntos µa,µb y µc se determinan por las intersecciones de las
ĺıneas generadas a partir de cuatro puntos µk en el plano imagen.

donde e1 y e2 son los puntos al infinito en el plano de referencia en dirección q1
y q2, respectivamente, y e3 es el origen del plano de referencia. Las coordenadas
homogéneas de los puntos e1, e2 y e3 están dadas por

H[e1] =

1
0
0

 , H[e2] =

0
1
0

 , H[e3] =

0
0
1

 . (2.20)

Usando los nuevos puntos junto con la Ec. (2.5), se obtiene el siguiente
conjunto de ecuaciones:

µa = H−1[GH[e1]],

µb = H−1[GH[e2]],

µc = H−1[GH[e3]].

(2.21)

Aplicando H−1 a cada ecuación y sustituyendo las columnas de la ecuación
(2.18), se obtiene

G = [γ1H[µa] γ2H[µb] H[µc]], (2.22)

donde γ1 y γ2 son factores de escala desconocidos. Los puntos µa, µb y µc se
conocen por los puntos µk dados por el usuario, como se observa en la figura 2.3.
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Utilizando los puntos conocidos µk, se obtiene el siguiente conjunto de ĺıneas:

`1 = H[µ1]×H[µ2],

`2 = H[µ3]×H[µ4],

`3 = H[µ1]×H[µ4],

`4 = H[µ2]×H[µ3],

`5 = H[µ2]×H[µ4],

`6 = H[µ1]×H[µ3],

(2.23)

donde `1 y `2 son ĺıneas paralelas hacia el eje x. Las ĺıneas `3 y `4 son para-
lelas hacia el eje y. La intersección de las ĺıneas `5 y `6 indica el origen. Las
intersecciones de las ĺıneas nos permiten calcular los puntos µa, µb y µc como

H[µa] = `1 × `2 = [a1 a2 a3]T ,

H[µb] = `3 × `4 = [b1 b2 b3]T ,

H[µc] = `5 × `6 = [c1 c2 c3]T .

(2.24)

Asumiendo que la cámara está alineada al plano de referencia en el origen
(R = I, t = 03), la Ec. (2.6) se reescribe como

λ
[
q1 q2 s

]
= K−1

[
γ1H[µa] γ2H[µb] H[µc]

]
. (2.25)

De esta manera se puede aprovechar la ortonormalidad de los vectores q1 y q2.
Asumiendo que qT1 q1 = qT2 q2 y qT1 q2 = 0, se obtiene

γ2
1H[µa]TWH[µa] = γ2

2H[µb]
TWH[µb], (2.26)

H[µa]TWH[µb] = 0, (2.27)

donde

W = K−TK−1. (2.28)

La matriz K se compone por los seis parámetros intŕınsecos de la cámara,
dados por el tamaño del ṕıxel (ancho sx y altura sy), las coordenadas del punto
principal (τx, τy), la distancia focal f y la oblicuidad del ṕıxel σ. Para simplificar
la estimación de estos parámetros, se usan las siguientes suposiciones [40]. En
la actualidad, la calidad de las cámaras modernas es alta. Entonces, podemos
asumir con seguridad que el sensor de la cámara tiene una oblicuidad de cero.
De esta manera, W se simplifica como

W =

 s2
x 0 −sxτx
0 s2

y −syτy
−sxτx −syτy τ2

x + τ2
y + f2

 . (2.29)

Además, el sensor de la cámara y sus lentes están alineados tal que el punto
principal está muy cercano al centro de la imagen. Por lo tanto, se asume que
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las coordenadas del punto principal son τx = τy = 0. De esta forma, la matriz
W se vuelve diagonal, espećıficamente,

W = diag(s2
x, s

2
y, f). (2.30)

Más aún, asumiendo que la relación de aspecto de los ṕıxeles es conocida, la
matriz W se puede reescribir como

W = diag(r2, 1, w), (2.31)

donde r = sx/sy es la relación de aspecto del ṕıxel (r = 1 si los ṕıxeles son
cuadrados), y w = f2/s2

y es una constante desconocida. Usando la matriz W ,
la Ec. (2.27) se puede reescribir como

a1b1r
2 + a2b2 + a3b3w = 0, (2.32)

obteniendo como resultado

w = −r
2a1b1 + a2b2

a3b3
. (2.33)

Con base en lo anterior, la matriz W se calcula usando la Ec. (2.26) para obtener
la relación del aspecto, dado por

ξ =
γ1

γ2
=

√
H[µb]

TWH[µb]

H[µa]TWH[µa]
. (2.34)

En consecuencia, para cada punto µ en la Ec. (2.12), su correspondencia del
punto ρ es[

ρk,x
ρk,y

]
=

1

(H[µa]×H[µb])
TH[µk]

[
(1/γ1)(H[µb]×H[µc])

T

−(1/γ2)(H[µa]×H[µc])
T

]
H[µk]. (2.35)

Por lo tanto, si se normaliza el ancho de la imagen (ρk,x), los factores esca-
lares puede ser calculados como

γ1 =
(H[µb]×H[µc])

TH[µk]

(H[µa]×H[µb])
TH[µk]

, y γ2 = γ1/ξ. (2.36)

De forma similar, si la altura de la imagen está normalizada (ρk,y), entonces

γ2 =
(H[µa]×H[µc])

TH[µk]

(H[µa]×H[µb])
TH[µk]

, y γ1 = ξγ2. (2.37)

El algoritmo propuesto requiere solo cuatro puntos µ que indican las es-
quinas de un rectángulo observado. Los puntos µ dados como entrada se usan
para determinar las ĺıneas de los contornos del rectángulo observado. Las ĺıneas
resultantes se usan para determinar tres puntos: µa (la imagen del punto al
infinito en dirección x), µb (la imagen del punto al infinito en dirección y) y µc
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Figura 2.4: Captura de cuatro puntos por cada rectángulo observado en la ima-
gen.

(la imagen del punto en el origen). Este algoritmo se puede aplicar al caso en
donde existan n ĺıneas paralelas a cada eje del plano observado. En la siguiente
subsección se analiza el proceso de obtener los puntos de intersección de las
ĺıneas paralelas.

Como se ha mencionado previamente, las homograf́ıas son muy útiles para
aplicaciones de procesamiento de imágenes. A continuación, se describirá la
aplicación de las matrices homograf́ıa para realizar corrección de perspectiva,
generación de imágenes panorámicas, y construcción de imágenes compuestas.

2.1.5. Corrección de perspectiva

En esta aplicación, se reciben como entrada cuatro puntos µ en la imagen, y
se entrega como salida una imagen sin distorsión de perspectiva. En la figura 2.4
se muestra las capturas de puntos µ para cada objeto de interés. El conjunto de
puntos µ perteneciente al objeto de interés, se calcula una homograf́ıa para re-
proyectar la imagen al plano de referencia. En la figura 2.5), se puede observar
los resultados de re-proyección de cada objeto de interés.

Los resultados obtenidos validaron experimentalmente la relación entre plano
imagen y plano de referencia. La geometŕıa que establece esta relación esta dada
por la homograf́ıa y se puede calcular de manera eficiente con los métodos de
estimaciones descritas en las subsecciones anteriores.

2.1.6. Generación de imágenes panorámicas

En esta aplicación, se reciben como entrada múltiples imágenes y se entrega
como resultado una imagen panorámica. Se calcula una homograf́ıa por cada
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Figura 2.5: Objetos seleccionados con perspectiva corregida. (a) Monitor de
computadora. (b) Documento impreso en hoja de papel. (c) Pantalla de tableta
electrónica.

imagen usando rectángulos de la escena, por ejemplo, los monitores de compu-
tadora en el caso de las figuras 2.6(a)-(c). Las homograf́ıas calculadas son usadas
para re-proyectar las imágenes proporcionadas a un único plano de referencia.
El resultado es una imagen panorámica como se muestras en la figura 2.6(d).

Con esta aplicación, se demuestra experimentalmente el plano de referencia
puede ser único y corresponder a múltiples homograf́ıas. Dado a esta particula-
ridad, la información de interés puede ser compartida en el plano de referencia
para una secuencia de video.

2.1.7. Construcción de imágenes compuestas

En esta aplicación, se reciben como entrada múltiples imágenes y se entrega
como resultado una vista tridimensional de la escena. En la aplicación se cal-
culan las homograf́ıas de cada imagen, ver figura 2.7. Las homograf́ıas de las
imágenes correspondientes a un mismo plano (piso, paredes, techo) son usadas
para generar imágenes panorámicas. Nuevamente, se determina una homograf́ıa
por cada imagen panorámica generada, ver figura 2.8. Finalmente, las homo-
graf́ıas son usadas para re-proyectar las imágenes panorámicas en las paredes
de una escena tridimensional virtual como se muestra en la figura 2.9.

Los resultados obtenidos muestran la flexibilidad y la facilidad en manejo de
planos. La geometŕıa del sistema permitió realizar la re-proyección de múltiples
planos hasta formar una escena tridimensional.

2.2. Calibración de cámaras usando homograf́ıas

Para describir el proceso de formación de imagen de una cámara, es necesa-
rio conocer sus parámetros intŕınsecos y extŕınsecos. Los parámetros intŕınsecos
representan caracteŕısticas internas de la cámara, como la distancia focal, dis-
torsión, oblicuidad y el punto central de la imagen. Los parámetros extŕınsecos
proporcionan la posición y orientación de la cámara. El proceso de la estimación
de los parámetros es mejor conocido como calibración.
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Figura 2.6: Composición de imágenes panorámicas. (a)-(c) Imágenes de entrada.
(d) Imagen panorámica resultante.

La calibración es una tarea esencial para aplicaciones de procesamiento de
imágenes. La disponibilidad de estos parámetros permite realizar triangulación
entre dispositivos, calcular la homograf́ıa, y determinar la pose de los objetos,
entre otras [40, 43]. En esta sección se presenta un método para estimar los
parámetros intŕınsecos y extŕınsecos usando múltiples homograf́ıas.

2.2.1. Parámetros intŕınsecos

Para estimar los parámetros intŕınsecos, se toman las siguientes considera-
ciones. El plano de referencias coincide con el plano xy del sistema de referencia
global, es decir, no existe rotación ni traslación en el plano de referencia. En este
caso, la orientación del plano es q1 = [1 0 0]T y q2 = [0 1 0]T . Usando las
consideraciones anteriores, la Ec. (2.18) se reduce a

G = K[r̄1 r̄2 −RT t], (2.38)

donde r̄1 y r̄2 son los dos primeros renglones de la matriz de rotación R de la
cámara. Por otro lado, la representación expĺıcita de la matriz G es mostrada
en la Ec. (2.18). Entonces, la Ec. (2.38) se reescribe como

[r̄1 r̄2 −RT t] = K−1[g1 g2 g3]. (2.39)

Los vectores r̄1 y r̄2 son ortogonales. Por lo tanto, se puede aprovechar que
r̄T1 r̄2 = 0 y ‖r̄1‖2 = ‖r̄2‖2, obteniendo

gT1 Wg2 = 0, gT1 Wg1 = gT2 Wg2, (2.40)
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Figura 2.7: Imágenes capturadas de una escena en diferentes puntos de obser-
vación. (a)-(d) Conjunto de imágenes correspondiente a una pared con objetos.
(e)-(g), (h)-(j), y (k)-(n) Conjuntos de imágenes de paredes, piso y techo de la
escena observado.

donde la matriz asimétrica W es definida como

W = K−TK−1 =

w11 w12 w13

w12 w22 w23

w13 w23 w33

 . (2.41)

La forma bilineal gTi Wg
T
j puede expresarse como

gTi Wg
T
j = Vij [G]w, (2.42)

donde

Vij [G] =


g1ig1j

g2ig2j

g3ig3j

g2ig1j + g1ig2j

g3ig1j + g1ig3j

g3ig2j + g2ig3j



T

, (2.43)

y

w = [w11 w22 w33 w12 w13 w23]T . (2.44)

Por lo tanto, las igualdades escritas en la Ec. (2.40) se pueden expresar como

V [G]w = 02, (2.45)
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Figura 2.8: Imágenes compuestas generadas por los conjuntos de imágenes cap-
turadas.

donde V [G] es una matriz de tamaño 2× 6 generada como

V [G] =

[
V12[G]

V11[G]− V22[G]

]
. (2.46)

La solución para encontrar w en la Ec. (2.45) es usar varias homograf́ıas
Gk, k = 1, 2, 3, . . . ,m. Para esto, las homograf́ıas se estiman en diferentes imáge-
nes donde se vaŕıa la posición y la orientación del plano de referencia, mientras
los parámetros intŕınsecos se mantienen constantes. Entonces, esta solución for-
ma una nueva matriz

Vw = 02m, (2.47)

donde
V = [V [G1]T V [G2]T . . . V [Gm]T ]T . (2.48)

La solución para encontrar el vector w de la Ec. (2.47) se puede obtener
usando el método de descomposición de valores singulares. El vector resultante
debe ser normalizado debido a que la matriz W es única excepto escala. Es decir,
el vector estimado, llamémosle w̃, se relaciona con el producto de la matriz W
por una constante λ. Esta relación se expresa matemáticamente como

W̃ = λW = λK−TK−1. (2.49)

Utilizando la matriz W̃ , las entradas kij de la matriz de parámetros intŕınse-
cos

K =

k11 k12 k13

0 k22 k23

0 0 1

 , (2.50)



20 CAPÍTULO 2. MARCO TEÓRICO

Figura 2.9: (a) Escena tridimensional creada con imágenes compuestas. (b)-(g)
Escena en diferentes ángulos.

son dadas como

λ = (det W̃ )/d,

k11 =
√
λ/w̃11,

k22 =
√
λ/w̃11d,

k12 = −w̃12

√
λ/w̃11d,

k13 = (w̃12w̃23 − w̃22w̃13)/d,

k13 = (w̃12w̃13 − w̃11w̃23)/d.

(2.51)

2.2.2. Parámetros extŕınsecos

El último paso de la calibración, es encontrar los parámetros extŕınsecos
usando los parámetros intŕınsecos disponibles. La matriz de rotación R y el
vector de rotación t se pueden estimar usando una homograf́ıa. Primero, se
estima R̃T de la matriz RT como

R̃T =
[
h1 h2 h1 × h2

]
, (2.52)

donde a través de la Ec. (2.39), los vectores h1 y h2 son dados por

h1 = K−1g1, h2 = K−1g2. (2.53)

Después, la matriz de rotación R es obtenida desde R̃ con la condición de orto-
gonalidad que mantienen las matrices de rotación. Para esto, la descomposición
de valores singulares R̃ = UΣV T es obtenida y la matriz de rotación requerida
es determinada como

R = UV T . (2.54)

Finalmente, el vector de translación t es calculado como

t = −RK−1g3. (2.55)
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2.3. Distorsión radial

La distorsión radial es una fuente de ruido en imágenes que introducen las
lentes de la mayoŕıa de las cámaras. Esta degradación es más susceptible en las
cámaras de bajo costo. Las distorsión radial afecta los resultados de algoritmos
de análisis y extracción de información métrica. Por esta razón, la distorsión
radial suele afectar severamente el desempeño en los algoritmos que se van a
utilizar para la navegación visual. A continuación, analizaremos un método de
estimación para obtener los parámetros de distorsión y a su vez corregir imágenes
distorsionadas [44].

2.3.1. Modelo polinomial

La distorsión radial se puede modelar de acuerdo a la relación entre un punto
con distorsión (δ) y un punto sin distorsión (β), como se muestra en la figura
2.10. Esta relación se expresa matemáticamente como

δ = d(r)[β − c] + c, (2.56)

donde
r = ‖β − c‖, (2.57)

con ‖·‖ indicando la norma Euclidiana, c = [cx, cy]T es el punto principal de
la cámara y d(r) es una función escalar modulando el nivel de la distorsión.
La función d(r) se puede deducir a partir de argumentos f́ısicos aplicando los
principios de propagación de la luz [45]. Sin embargo, la función d(r) se puede
aproximar a través de una serie de Taylor truncada como

d(r) = d0 + d1r + d2r
2, (2.58)

donde d0, d1 y d2 son coeficientes constantes. La serie de Taylor es reducida
hasta el segundo orden dado que la aproximación es confiable para la función
d(r).

En las ecuaciones (2.56) y (2.58) se puede observar que la distorsión radial
introducida por la lente está caracterizada por los coeficientes dk de la función
d(r) y las coordenadas (cx, cy) del punto principal c. Estos parámetros pueden
ser estimados por el algoritmo de Gauss-Newton como se describe a continua-
ción.

Sea d el vector que contiene todos los coeficientes que caracterizan la distor-
sión radial; es decir,

d = [d0 d1 d2 cx cy]T . (2.59)

Para el vector de parámetros d, la matriz Jacobiana del modelo es

J(d) =
∂

∂d
δ =

[
∂δx/∂δ
∂δy/∂δ

]
. (2.60)

De esta forma, los parámetros del vector se pueden estimar iterativamente por

dk+1 = dk + [JT (dk)J(dk)]−1JT (dk)[δ − δ(dk)], (2.61)
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Figura 2.10: La distorsión radial de acuerdo a la transformación de un punto
sin distorsión β a un punto distorsionado δ.

donde δ(dk) es el punto con distorsión calculada usando dk. Los parámetros
iniciales pueden ser d0 = [1, 0, 0, 0, 0]T , es decir, sin distorsión y el punto prin-
cipal ubicado en el centro de la imagen (origen del sistema de referencia). Hay
dos criterios de paro, el primero es el número de iteraciones máximas supera-
das para encontrar la solución. Y el segundo es la convergencia relativa descrita
como ‖dk+1 − dk‖ ≤ ε, donde ε es un valor numérico dado por el usuario.

Usando los parámetros de distorsión estimados, las imágenes distorsionadas
se pueden corregir utilizando la Ec. (2.56). Esto mejora significativamente los
resultados para los algoritmos de detección, reduce los falsos positivos en los
métodos utilizados y en general, la estabilidad al sistema.

Finalmente, utilizando los parámetros de distorsión estimados se puede co-
rregir la distorsión radial en las imágenes capturadas usando la Ec. (2.56). En
el caṕıtulo 3 analizará de forma experimental la mejora en los resultados al
procesar imágenes sin distorsión.

2.3.2. Corrección de distorsión radial

Para ilustrar la aplicación de las matrices homograf́ıa, aśı como el funcio-
namiento del modelo de distorsión propuesto, se presenta a continuación un
ejemplo de corrección de perspectiva y distorsión de una imagen.

Primeramente, se mostrará una simulación que se realizó para validar el
método de la estimación de distorsión radial. Usando la Ec. (2.58) y una dis-
torsión predefinida d = [1,5, 0,5, 0,6, 0,5, 0,5], se genera una rejilla distorsionada
dada por

I =
1

4
(2 + cos(10πδx) + cos(10πδy)). (2.62)

Enseguida, la rejilla es usada como entrada para estimar la distorsión radial;
como parámetro inicial se utilizó d = [1, 0, 0, 0, 0]. En la figura 2.11, se pue-
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Figura 2.11: Simulación de distorsión de lentes. (a) Imagen de una rejilla con
distorsión radial. (b) Imagen de la regilla en (a) con distorsión radial corregida.

de observar la rejilla distorsionada y la corrección de la distorsión usando los
parámetros estimadas.

En la figura 2.12(a) se puede observar una imagen distorsionada. Los paráme-
tros de distorsión encontradas fueron d = [1, 0,1, 0,6, 0, 0] en la sexta iteración
con un error de ε = 7,26e − 7. Con los parámetros encontrados y usando la
Ec. (2.56), se calculan las escalas de la distorsión y se utilizan para corregir la
perspectiva y distorsión de la imagen, como se muestra en la figura 2.12(b). En
la figura 2.12(c), se centra una región de interés en la imagen corregida.

2.4. Detección de contornos

La detección de contornos es una tarea esencial en el procesamiento de imáge-
nes. Espećıficamente, se utilizan en sistemas de detección y extracción de ca-
racteŕısticas. Esto permite detectar la discontinuidad o el cambio de brillo en
los puntos de la imagen. El método tradicional utilizado para la detección de
contornos es el método del gradiente que se describe a continuación.

2.4.1. Método del gradiente

Los contornos en una imagen pueden interpretarse como cambios bruscos
de intensidad. En términos matemáticos, se puede asociar los contornos de la
imagen con discontinuidades en las derivadas de la intensidad. Este es el prin-
cipio general del funcionamiento del método del gradiente para detección de
contornos.

La derivada de la intensidad I(x, y) a lo largo de la dirección x está dada
por ∂I(x, y)/∂x. Para detectar discontinuidades, consideramos las derivadas de



24 CAPÍTULO 2. MARCO TEÓRICO

Figura 2.12: Corrección de perspectiva y distorsión de una imagen. (a) Imagen
con perspectiva y distorsión radial. (b) Imagen corregida, y (c) la región de
interés.

la intensidad en los ejes x e y a través del operador gradiente como

∇I(x, y) =
∂I(x, y)

∂x
i +

∂I(x, y)

∂y
j, (2.63)

donde ∇ representa el operador gradiente, i, j representan vectores unitarios
en la dirección x e y, respectivamente, y

∂I(x, y)

∂x
= ĺım

∆x→0

I(x+ ∆x, y)− I(x, y)

∆x
,

∂I(x, y)

∂y
= ĺım

∆y→0

I(x, y + +∆y)− I(x, y)

∆y
.

(2.64)

De esta forma, la ubicación de contornos en la imagen corresponderá a aquellos
puntos (x, y) donde la magnitud del gradiente

|∇I| =

√
∂I

∂x

2

+
∂I

∂y

2

, (2.65)

tome valores altos; es decir
|∇I| ≥ u, (2.66)

donde | · | representa la magnitud del argumento vectorial dado y u es un valor
de umbral dado.

El método del gradiente es simple y fácil de implementar computacional-
mente. Sin embargo, debido al uso de derivadas, el ruido de las imágenes suele
amplificarse considerablemente. En consecuencia, el resultado de la detección
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contiene contornos en puntos continuos, o de lo contrario, los puntos disconti-
nuos son ignorados. Para limitar los efectos del ruido, se puede hacer un filtrado
inicial que suprimen el ruido, y luego detectar los contornos. Existen en la litera-
tura otras propuestas para detección de contornos en donde se incluye un filtro
de ruido [46–48]. Estos métodos mejoran considerablemente el desempeño de la
detección de contornos. Entre los métodos propuestos, uno de los más exitosos
es el método de detección de contornos de Canny [49].

2.4.2. Método de Canny

El método de Canny toma en consideración tres criterios para mejorar el
desempeño de la detección de contornos. El primer criterio es la buena detec-
ción. Este criterio maximiza la relación señal/ruido para incrementar o reducir
la probabilidad en detectar puntos continuos como discontinuidad. El segundo
criterio es la buena localización. Un operador decide cuáles puntos se consideran
contornos de acuerdo al contorno central. Por último, el criterio de selección de
contornos. Se descartan las señales falsas cuando se registran múltiples respues-
tas de la detección.

De acuerdo a los criterios mencionados, se suaviza la imagen para reducir el
ruido mejorando la detección de contornos. La suavización se realiza a través de
la convolución entre la primera derivada de una señal bidimensional Gaussiana
Gn(x, y) en dirección n y la imagen I(x, y), es decir

Gn(x, y) ∗ I(x, y), (2.67)

donde “∗” es el operador de convolución,

Gn(x, y) = n · ∇G(x, y), (2.68)

n es el vector de dirección, “·” representa el operador de producto punto,

G(x, y) = exp

(
−x

2 + y2

2σ2

)
, (2.69)

y σ2 es la desviación estándar de la señal Gaussiana. La dirección n no es
conocida y por lo general, debe ser orientada a la misma dirección que los
contornos para ser detectados. Sin embargo, se puede realizar una aproximación
usando la dirección del gradiente suavizado

n̂ =
∇(G(x, y) ∗ I(x, y))

|∇(G(x, y) ∗ I(x, y))|
. (2.70)

La dirección n̂ calculada resulta una buena aproximación debido a la suavidad
aplicada a la dirección del gradiente del contorno. Por otro lado, un punto se
considera discontinuo cuando el operador Gn(x, y) aplicado en la imagen I(x, y)
es el máximo local, es decir,

Gn(x, y) ∗ I(x, y) ≈ 0. (2.71)
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Asociando la convolución Gaussiana con la Ec. (2.68), se puede reescribir la Ec.
(2.71) como

∂2

∂n2
G(x, y) ∗ I(x, y) = 0. (2.72)

De la misma forma, se utiliza la magnitud para determinar la intensidad de
los contornos detectados

|Gn(x, y) ∗ I(x, y)| = |∇(G(x, y) ∗ I(x, y))|. (2.73)

Usando la propiedad asociativa de la convolución, en la Ec. (2.72) se puede
aplicar, primero, la convolución entre la señal Gaussiana G(x, y) y la imagen
I(x, y). Después, se calcula la segunda derivada parcial respecto a n para detec-
tar los contornos. Esto es equivalente a detectar y localizar los contornos usando
el operador Gn(x, y) pero sin necesidad de conocer la dirección n.

La segunda derivada parcial de la Ec. (2.72) se resuelve usando un filtro
Gaussiano n-dimensional [50]. Este filtro se puede construir de manera eficiente
considerando múltiples filtros Gaussiano unidimensional como

GnD(θ) = G1D(θ1) ∗G1D(θ2) ∗G1D(θ3) ∗ · · · ∗G1D(θn), (2.74)

donde GnD(x) es el filtro Gaussiano n-dimensional y G1D(xk) es el k-ésimo
filtro Gaussiano de una dimensión. Un filtro G1D(x) esta compuesto por opera-
dores de dirección para ajustar el contorno de un punto observado. El operador
de dirección O(θ) se determina por un filtro Gaussiano normalizado de una
dimensión en dirección de θ; espećıficamente,

O(θ) =
cos θ

2N + 1

[
N∑

k=−N

exp

(
− (kd sin θ)2

2σ2

)]
, (2.75)

donde N es el número de muestras, y d es la distancia del punto local con el
punto observado. El tamaño de un filtro Gaussiano unidimensional es 2N +
1 operadores de dirección. Para casos espećıficos, el ángulo θ es dado por el
usuario. En casos generales, el ángulo θ se puede determinar con incrementos
de 180/n. Por ejemplo, si quiero cuatro filtros Gaussiano unidimensionales, los
ángulos seŕıan θ = [0, 45, 90, 135]. Por la disponibilidad de los operadores, se
pueden calcular los puntos discontinuos sustituyendo la segunda derivada parcial
de la Ec. (2.72) por una convolución con el filtro de la Ec. (2.74).

Los contornos son una fuente de información para el algoritmo de detección
de ĺıneas. Sin embargo, en la escena observada por la cámara tendrá mucha
más información de objetos que no son de interés; por ejemplo, árboles, edifi-
cios, señales de tránsito, veh́ıculos, postes de cables eléctricos, etc. Toda esta
información puede hacer más dif́ıcil la detección de las ĺıneas de carril. Por esta
razón, se propone el uso de un filtro de ventana que elimina los contornos que
están fuera del área donde se espera observar el carril. Este filtro eliminará los
contornos que no contribuirán a la detección de las ĺıneas de carril. Además, de
esta forma se incrementa el desempeño de la transformada de Hough debido a
que se reduce el número de ṕıxeles a procesar.

serán detectados los contornos de deferentes objetos que no son de interés,
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Figura 2.13: Representaciones de las ĺıneas de carril en (a) el piso o plano de
referencia, y (b) el plano imagen.

2.4.3. Filtro de ventana

La idea general para construir un el filtro de ventana consiste en definir un
área en donde se espera que se encuentre el carril de interés. Para ello, usamos
como referencia la ubicación relativa de la cámara y la pista detectada en imáge-
nes previas. Además, partimos del hecho de que la configuración cámara-piso
es constante y definida por una matriz homograf́ıa. Esta homograf́ıa se puede
obtener previamente a través del método de estimación usando cuadriláteros
(ver la subsección 2.1.4).

Supondremos que sobre el piso, las ĺıneas de carril son las ĺıneas x = 0 y
x = 1 como se muestra en la figura 2.13(a). La representación de estas ĺıneas de
carril en coordenadas homogéneas es

`0 =

 1
0
0

 , (Ĺınea de carril izquierda),

`1 =

 1
0
−1

 , (Ĺınea de carril derecha).

(2.76)

En la imagen capturada por la cámara, las ĺıneas de carril `0 y `1 serán
observadas como las ĺıneas m0 y m1 como se muestra en la figura 2.13(b). Si G
es la matriz homograf́ıa que define la geometŕıa entre el piso y el plano imagen,
entonces podemos calcular m0 y m1 a partir de `0 y `1 como

mk = G−T `k, k = 0, 1. (2.77)

Las ĺıneas observadasm0 ym1 definen un área que es dif́ıcil de describir ma-
temáticamente para definir la región de interés en la imagen. Por esta razón, en
lugar de considerar el plano imagen, el filtro de ventana es construido basándose
en el plano de referencia donde las ĺıneas de carril `0 y `1 siempre son fijas y
verticales.
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Figura 2.14: Representación de una ĺınea parametrizada: (a) y = mx + b y (b)
ρ = x cosφ+ y sinφ.

Usando la matriz homograf́ıa G, transformamos las coordenadas µ de puntos
del plano imagen a sus correspondientes puntos ρ del plano de referencia como

ρ(µ) =

[
ρx(µ)
ρy(µ)

]
= H−1[G−1H[µ]]. (2.78)

De esta manera, con el filtro de ventana W determinamos si el punto µ está
dentro o fuera de la región de interés de acuerdo a

W (µ) =

{
0, si ρx(µ) > 1 + ε, o ρx(µ) < −ε,
1, caso contrario,

(2.79)

donde ε es un valor positivo dado por el usuario, con la finalidad de que la
ventana W (µ) contenga las ĺıneas de carril de interés, como se observa en la
región sombreada mostrada en la figura 2.13.

2.5. Detección de ĺıneas

La detección de ĺıneas es un método de gran importancia para uso de apli-
caciones, tales como, la navegación autónoma, calibración de cámaras, recu-
peración de objetos tridimensionales, compresión de datos, y rectificación de
imágenes, entre otras [51–55]. Las ĺıneas poseen propiedades geométricas para
determinar los parámetros de posición y orientación [56]. Con base en lo anterior,
se utiliza este fuente de información para la navegación visual.

La transformada de Hough se usa t́ıpicamente para detección de ĺıneas, ćırcu-
los, cónicas, y, en general, curvas cuya representación paramétrica esté dispo-
nible [57]. Dado que pueden existir múltiples parametrizaciones de un objeto,
la implementación de la transformada de Hough para detectar algún objeto en
espećıfico no es única [58]. Para la detección ĺıneas, podŕıamos elegir la parame-
trización (m, b),

y = mx+ b, (2.80)
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Figura 2.15: Representación de nutrientes en la dieta de un paciente graficados
usando coordenadas paralelas2.

o la parametrización (φ, ρ),

ρ = x cosφ+ y sinφ. (2.81)

En la figura 2.14 se muestra gráficamente cada una de las representaciones
descritas. Es importante ver que las ecuaciones (2.80) y (2.81) conducirán a
implementaciones de la transformada de Hough muy diferentes. Lo más eviden-
te es que la parametrización dada por la ecuación (2.80) no puede representar
ĺıneas verticales. Por otro lado, la implementación de la transformada de Hough
usando la parametrización dada por la ecuación (2.81) requiere mayor capacidad
computacional debido al manejo de curvas cosenoidales. Este ejemplo refleja la
importancia de elegir adecuadamente una parametrización que permita imple-
mentar la transformada de Hough de manera eficiente [58].

El principio de funcionamiento de la transformada de Hough se basa en acu-
mular las posibles soluciones a la que pertenezca un punto en la imagen. Por
ejemplo, si se pretende detectar ĺıneas, entonces todo punto p en la imagen que
posiblemente pertenece a una ĺınea se representa en el plano de Hough abar-
cando todas las posibles ĺıneas que pasan por p. Este proceso se puede realizar
eficientemente empleando representación de puntos y ĺıneas en coordenadas pa-
ralelas como veremos a continuación.

2.5.1. Coordenadas paralelas

Las coordenadas paralelas fueron introducidas con la finalidad de represen-
tar gráficamente objetos que existen en múltiples dimensiones. Este sistema de
coordenadas es de mucha utilidad para el procesamiento de imágenes. Además,
sirve para analizar otros problemas de diferentes áreas de estudio. Por ejemplo,
se puede realizar una gráfica alimenticia sobre de la tabla nutricional de varios
productos. Los ejes paralelos corresponde para cada grupo de macronutrientes y
la información generada puede aportar una sana alimentación para el paciente.
En la figura 2.15 se muestra el ejemplo descrito donde indica el valor nutricional
de cada producto.

La literatura ha demostrado que el uso de coordenadas paralelas proporciona
una forma bastante eficiente de trabajar con ĺıneas rectas [59,60]. Por esta razón,

2Imagen tomada de https://www.d3-graph-gallery.com/parallel.
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se utilizan coordenadas paralelas y la transformada de Hough para el diseño del
algoritmo de detección de ĺıneas.

2.5.2. Transformada de Hough

Antes de comenzar a describir el método de la transformada de Hough, defini-
remos primero el espacio de cada plano. El plano imagen utiliza las coordenadas
cartesianas (x, y) y el plano de Hough utiliza las coordenadas cartesianas (u, v)
como se muestran en la figura 2.16. Por lo tanto, un punto en el plano imagen
se representa como p = [px, py]T , ver figura 2.16(a). Asimismo, un punto p se
representa en el plano de Hough como una poliĺınea σ de dos segmentos. Esta
transformación se puede visualizar en la figura 2.16(b) y está definida como

σ = S±1H[p], (2.82)

donde

S±1 =

±1 −1 0
0 0 1
−1 0 0

 . (2.83)

Considere una linea ` que contiene puntos pk, k = 1, 2, . . . , n, como se mues-
tra en la figura 2.16(c). Las poliĺıneas σk correspondientes en el plano uv inter-
sectan en el punto ˆ̀ dado por

ˆ̀= H−1[S−T±1 `]. (2.84)

En consecuencia, en el plano de Hough se produce un pico de intensidad en el
punto ˆ̀ por la acumulación de las poliĺıneas σk, como se muestra en la figura
2.16(d). Por lo tanto, el proceso para la detección de una ĺınea en la imagen
se simplifica en el plano de Hough; solo se requiere un algoritmo simple de
detección de picos.

La transformada de Hough también es útil para detectar puntos donde va-
rias ĺıneas intersectan. Estos puntos son conocidos como puntos de concurrencia
como se muestra figura 2.16(e)-(f). Para ello, usamos primero la transformada
de Hough para detectar ĺıneas y, al resultado, aplicamos nuevamente la transfor-
mada de Hough para detectar los puntos de concurrencia. En este proceso, nos
referimos a la primera transformada de Hough para detectar ĺıneas, y segunda
transformada de Hough para detectar puntos de concurrencia. En el apéndice
C se describe de manera formal la segunda transformada de Hough.

2.5.3. Máscara Gaussiana

La idea principal de la máscara Gaussiana consiste en suprimir información
del plano de Hough que no contiene las ĺıneas de interés de acuerdo a estima-
ciones previas. Aśı, la búsqueda de ĺıneas en el plano de Hough se limita al área
definida por la máscara Gaussiana. La transformada de Hough acumula todos
los posibles resultados de la detección de ĺıneas. Para las ĺıneas de carril solo se
necesita dos picos de intensidad alta en el plano de Hough. Los picos detectados
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Figura 2.16: A la derecha está la representación de puntos y ĺıneas en el plano
imagen y a la izquierda su correspondiente representación en el plano de Hough.
(a) Un punto p en el plano imagen se representa como (b) una poliĺınea σ
en el plano de Hough. (c) Una ĺınea ` con puntos pk en el plano imagen se
representa como (b) un punto ˆ̀ en el plano de Hough. (e) Un conjunto de
ĺıneas concurrentes `k que intersectan en un punto p se representan como (f) un
conjunto de puntos ˆ̀ que son “colineales” a lo largo de la poliĺınea σ.
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Figura 2.17: (a) D1, D2 y D3 son máscaras Gaussianas centrados en el origen.
(b) Máscara Gaussiana D centrado en el punto t con ángulo de orientación φ.

no aseguran que sean las ĺıneas del carril de interés a pesar que los contornos
fueron reducidos por el filtro de ventana. Dentro del carril aún existe informa-
ción adicional que ocasiona ruido a la detección. Por esta razón, se propone el
uso de una máscara Gaussiana para limitar el área de búsqueda de ĺıneas. Este
filtro eliminará todos los puntos fuera de la región donde se espera encontrar las
ĺıneas de carril.

Podemos definir la máscara Gaussiana bidimensional como

D(x, y) = exp

(
−ax2 − by2

2σ2

)
, (2.85)

donde a y b son los parámetros que determinan el tamaño del filtro a lo largo
del eje-x y del eje-y, respectivamente. El filtro definido en la ecuación (2.85)
está centrado en el origen del sistema de referencias como se muestra en la
figura 2.17(a). Sin embargo, las ĺıneas detectadas pueden estar en posiciones y
orientaciones diferentes. Por ello, se realiza una transformación del sistema de
referencia a la posición t y orientación φ esperadas de las ĺıneas de interés como[

x′

y′

]
= R(φ)

([
x
y

]
− t
)
, (2.86)

donde R(φ) es una matriz de rotación y t un vector de traslación dados como

R(φ) =

[
cosφ − sinφ
sinφ cosφ

]
, t =

[
tx
ty

]
. (2.87)

De esta forma, la máscara Gaussiana D(x′, y′) estará centrado en el punto
(tx, ty) con una orientación dada por φ como se muestra en la figura 2.17(b).
Como primera instancia, se utiliza el ángulo y la posición dadas por las ĺıneas
de referencia. Después, se toman las ĺıneas detectadas en imágenes previas.
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Figura 2.18: (a) Vista del plano de referencia cuando el veh́ıculo se encuentra
centrado y alineado. (b) Imagen observada por la cámara.

2.6. Estimación de posición y orientación

En esta tesis usamos las ĺıneas de carril detectadas para estimar la posición y
orientación del veh́ıculo. Para esto, partimos de las definiciones de ĺıneas de carril
descritas en la Ec. (2.76) de la subsección 2.4.3. Las ĺıneas `0, y `1 representan
el caso particular cuando el veh́ıculo se encuentra centrado y alineado (x = 0.5
y φ = 0), como se muestra en la figura 2.18(a). En el caso general, donde el
veh́ıculo se encuentra en cualquier otra posición y orientación (x, φ), las ĺıneas
de carril estarán dadas por

˜̀
0 = λ0

cosφ
sinφ
−x

 , ˜̀
1 = λ1

 cosφ
sinφ
−1− x

 , (2.88)

donde λ0 y λ1 son dos escalares cualquiera diferentes de cero.
En un proceso previo de calibración, determinamos la geometŕıa entre el piso

y el plano imagen calculando la homograf́ıa G usando alguno de los métodos
descritos en la sección 2.1. Una de las formas más directas es usando el cua-
drilátero resultante de algún rectángulo en la escena, ver subsección 2.1.4. Aśı,
la matriz homograf́ıa G estará disponible.

Del método propuesto para detección de ĺıneas de carril, obtenemos como
resultado los vectores m0 y m1 que representan las ĺıneas de carril detectadas.
Podemos emplear la matriz homograf́ıa G disponible para relacionar las ĺıneas
de carril en el plano del piso con las ĺıneas detectadas en el plano imagen como

˜̀
0 = GT m̃0 =

˜̀
0,x

˜̀
0,y

˜̀
0,z

 ,
˜̀
1 = GT m̃1 =

˜̀
1,x

˜̀
1,y

˜̀
1,z

 .
(2.89)
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Usando la Ec. (2.88) en (2.89), se obtienen las igualdades

˜̀
0,x = λ0 cosφ,

˜̀
0,y = λ0 sinφ,

˜̀
0,z = −λ0x,

˜̀
1,x = λ1 cosφ,

˜̀
1,y = λ1 sinφ,

˜̀
1,z = −λ1 − λ1x.

(2.90)

De esta forma, podemos calcular la posición x y orientación φ usando las com-
ponentes de ˜̀

0 y ˜̀
1 como

tanφ =
1

2

(
˜̀
0,y

˜̀
0,x

+
˜̀
1,y

˜̀
2,x

)
,

x = −1

2

(
1

λ0

˜̀
0,z +

˜̀
1,z + λ1

λ1

)
,

(2.91)

donde λ0 y λ1 se calculan usando

λ2
0 = ˜̀2

0,x + ˜̀2
0,y,

λ2
1 = ˜̀2

1,x + ˜̀2
1,y.

(2.92)

La navegación asistida utiliza la disponibilidad de la posición y orientación
del veh́ıculo para retroalimentar el sistema. Para una buena navegación, es ne-
cesario minimizar los errores de mediciones calculados. Para esto, se implemen-
taron mejoras a la detección de ĺıneas de carril mediante el uso de un filtro de
ventana y máscara Gaussiana. Sin embargo, existen casos extremos donde las
ĺıneas de carril tiene poca o nada de visibilidad en la escena observada. Las
ĺıneas de carril se pierden y cuando se puedan volver a visualizar, la posición y
orientación cambiaran drásticamente ocasionando la inestabilidad del sistema.
Algunos factores que atribuyen a esta causa son la oclusión por objetos, de-
gradación de piso, iluminación y discontinuidad de ĺıneas, entre otras. Por esta
razón, se propone implementar un algoritmo de predicción de ĺıneas de carril pa-
ra evitar los cambios drásticos en ĺıneas de carril. A continuación describiremos
formalmente este proceso de predicción usando las posiciones y orientaciones
calculadas previamente para suavizar la detección de ĺıneas de carril.

2.6.1. Predicción de ĺıneas de carril

El método de predicción de ĺıneas de carril se basa en proporcionar una nueva
medición dada por las entradas de estimaciones previas. Para esto, utilizamos
el método de mı́nimos cuadrados recursivos con factor de olvido para predecir
los parámetros del sistema. El factor de olvido asigna la importancia que tiene
las estimaciones previas, entre más antiguas sean, menor importancia van a ser.
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El método de mı́nimos cuadrados recursivos con factor de olvido es descrito de
manera formal en el apéndice A.

Utilizando la notación [·]k como la estimación actual, [·]k−1 como estimacio-
nes previas; podemos escribir la predicción de la posición del veh́ıculo como

xk = xk−1 +
[
(Pk−1θ

T
k )/(λ+ θkPk−1θ

T
k )
]
ξk, (2.93)

donde θ son las variables de regresión, λ es el factor de olvido, ξ es el error de
la función, y

Pk−1 = ΘT
k−1ΛΘk−1,

Θk−1 =
[
θT1 ,θ

T
2 ,θ

T
3 , . . . ,θ

T
k−1

]
,

Λ = diag(λk−1, λk−2, λk−3, . . . , λ0).

(2.94)

De la misma manera, la orientación del veh́ıculo se puede predecir como

φk = φk−1 +
[
(Pk−1θ

T
k )/(λ+ θkPk−1θ

T
k )
]
ξk, (2.95)

En el siguiente caṕıtulo se evaluará el desempeño del método propuesto
procesando secuencias de video del mundo real. Se realizará la descripción de
las plataformas utilizadas para las pruebas experimentales. Se presentarán los
detalles importantes de la implementación del método propuesto y la calibración
de la cámara de un robot móvil. Finalmente, los resultados obtenidos serán
analizados y discutidos.
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Capı́tulo 3
Desarrollo experimental y
resultados

3.1. Plataforma experimental

En este trabajo de tesis, se utilizan dos plataformas para la implementación
del algoritmo de navegación visual de un robot. En la figura 3.1 se muestra el ro-
bot móvil terrestre OSOYOO utilizado para realizar la navegación en una pista
experimental. El sistema esta equipado con una tarjeta Raspberry Pi 3 B+ para
el control y la comunicación del veh́ıculo. Esta tarjeta es una pequeña compu-
tadora de gran utilidad para controlar la velocidad de los motores, adquisición
de imágenes por la cámara y conexión a la red para transferir los datos hacia
otra plataforma. Para realizar el procesamiento de datos, se usa una compu-
tadora de escritorio equipada con el procesador gráfico NVIDIA Geforce GTX
760 para ejecutar tareas de cómputo paralelo, como se muestra en la figura
3.2. Esta computadora se utiliza para ejecutar los algoritmos de procesamiento
propuestos.

En la figura 3.3, se muestra la pista experimental para la navegación del
robot móvil terrestre. Las grabaciones son capturadas para el procesamiento del
algoritmo desarrollado y posteriormente, son evaluado de acuerdo al desempeño
y robustez de la estimación de posición y orientación del veh́ıculo.

3.2. Implementación en cómputo paralelo

El paradigma de los algoritmos paralelos es la ejecución simultánea de tareas.
Esto genera ventajas como la ejecución de tareas en múltiples procesadores, la
capacidad de resolver problemas de alta complejidad y mejoras en tiempos de
respuesta, entre otros. Para esto, se tiene que realizar un nuevo diseño paralelo
para independizar las tareas. En el algoritmo de la detección de ĺıneas de carril

37
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Figura 3.1: Plataforma para navegación y adquisición de imágenes. (a) Cámara
convencional conectada a la tarjeta de desarrollo Raspberry Pi 3 B+. (b) Robot
móvil ensamblado.

Figura 3.2: Plataforma para procesamiento de imágenes. (a) Computadora de
escritorio. (b) Tarjeta de video NVIDIA Geforce GTX 760.

se paralizaron varias tareas, espećıficamente, la detección de contornos y la
transformada de Hough como se muestra en la figura 3.4. Los detalles de cada
tarea se describen a continuación.

Primeramente, se recibe la imagen capturada en la unidad central de proce-
samiento (CPU por sus siglas en inglés Central Processing Unit), y se transfiere
a la memoria de unidad de procesamiento gráfico. Después, se realiza la detec-
ción de contornos para cada punto de la imagen en los procesadores del GPU.
A continuación, cada punto de los contornos son procesados para encontrar su
respectiva poliĺınea y se acumulan en cada coordenada del plano de Hough. Des-
pués, se retornan los puntos acumulados hacia la memoria del CPU. Finalmente,
se detectan las dos ĺıneas representadas por los picos de intensidad alta en el
plano de Hough.

En la figura 3.5(a)-(d) se observa una secuencia de imágenes de un patrón
cuadro-radial en diferentes perspectivas. Las imágenes son procesadas utilizando
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Figura 3.3: Pista de prueba para navegación de un robot móvil terrestre.

el algoritmo paralelo para la detección de ĺıneas. El resultado de las detecciones
se puede visualizar en la figura 3.5(e)-(h). Las ĺıneas detectadas son utilizadas
para encontrar la concurrencia entre ellas usando la segunda transformada de
Hough (consultar Apéndice C).

La implementación en cómputo paralelo (CUDA) fue favorable comparan-
do el tiempo de respuesta con el obtenido en la implementación del algoritmo
secuencial en el software MATLAB. Usando la tarjeta de procesador gráfico
NVIDIA Geforce GTX 760, se obtuvieron los resultados presentados en la tabla
comparativa 3.1. La implementación de cómputo paralelo tiene una mejora de
29X (872.12 ms/29.77 ms = 29.29) en el rendimiento del sistema. Debido a su
tiempo de ejecución se obtiene una mejora en la estabilidad del sistema.

3.3. Calibración de cámara

Como hemos visto anteriormente, la estimación de parámetros intŕınsecos
y extŕınsecos de una cámara requieren múltiples homograf́ıas. Adicionalmente,

Figura 3.4: Arquitectura del algoritmo de la transformada de Hough en cómputo
paralelo.
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Figura 3.5: (a)-(d) Secuencia de imágenes de un patrón cuadro-radial en dife-
rentes perspectivas. (e)-(h) Representación de las imágenes (a)-(d) en el plano
de Hough.

Cuadro 3.1: Comparación en tiempos de ejecución para cada implementación.
Detección
de contornos

Transformada
de Hough

Cuadros por
segundo (fps)

MATLAB 12.85 ms 853.27 ms 1.15 fps
CUDA 0.23 ms 29.54 ms 33.59 fps

para la estimación de homograf́ıas se requieren tres puntos en el plano imagen:
µa, el punto al infinito en dirección x, µb, el punto al infinito en dirección y, y µc,
la imagen del origen. Por conveniencia, se utiliza la transformada Hough para
detectar los puntos del plano imagen requerido. A continuación, se describirán
los pasos que se realizaron para la calibración de la cámara del robot móvil.

Primeramente, se capturaron 32 imágenes en diferentes puntos de obser-
vación al patrón de calibración como se muestra en la figura 3.6. Después, se
utilizó la transformada de Hough para detectar los puntos del plano imagen (µ)
de cada imagen. Como siguiente paso, los puntos µa, µb y µc fueron procesados
para calcular la homograf́ıa cada imagen. Finalmente, todas las homograf́ıas
calculadas fueron utilizadas para la estimación de los parámetros intŕınsecos y
extŕınsecos de la cámara. Los parámetros intŕınsecos y extŕınsecos resultantes
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Figura 3.6: Patrones de calibración capturados por la cámara del robot móvil
terrestre.

son

K =

2,0184 0 0,0359
0 2,6129 −0,4382
0 0 1

 ,
R =

0,9997 0,0215 −0,0109
0,0209 −0,5473 0,8367
0,0121 −0,8367 −0,5476

 , y

t =

 −22,1248
−255,3641
158,7193

 .
(3.1)

Los parámetros obtenidos de la cámara son utilizados para formar la homo-
graf́ıa del sistema.

3.4. Corrección de imágenes distorsionadas

En esta sección se va estimar la distorsión radial de la lente que tiene la
cámara del robot móvil. Para esto, se analiza la diferencia entre un plano de
referencia observado y el plano imagen. Por esto, capturamos los patrones de
franjas desplegados en un monitor de computadora (plano de referencia) como
se muestra en la figura 3.7. Se utilizó una rejilla con una única franja (frecuencia
espacial f = 1) con 16 corrimientos de fase. No fue necesario usar rejillas de
mayor frecuencia debido a que el monitor usado para desplegar las rejillas no
presenta distorsión gamma. Además, al usar la frecuencia f = 1, se evita el
proceso de desenvolvimiento de fase [43].
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Se capturaron dos conjuntos de 16 patrones de franjas (16 patrones de fran-
jas por cada eje coordenado, x, y). Los 32 patrones de franjas resultantes son
procesados usando el método de corrimiento de fase [61]. En la figura 3.8, se
presenta la fase extráıda, que corresponde a las coordenadas de los puntos del
plano de referencia (sin distorsión). Los puntos del plano de referencia se com-
paran con los puntos del plano imagen (afectados por distorsión radial de la
lente).

Las correspondencias de puntos resultantes (puntos con distorsión y sin dis-
torsión) son procesadas para estimar los parámetros de distorsión aplicando el
método analizado previamente en el caṕıtulo 2. El resultado de la estimación de
parámetros es

d =
[
0,9567 −0,0320 0,1911 −0,0012 0,0098

]T
. (3.2)

Usando los parámetros de distorsión estimados, se puede realizar corrección
de distorsión radial de la imagen de entrada. En la figura 3.9(a), se muestra una
imagen de las ĺıneas de carril capturada por la cámara del robot. Empleando los
parámetros estimados, se corrige la distorsión radial de la imagen empleando la
Ec. (2.56). En la figura 3.9(b), se muestra el resultado de la corrección de distor-
sión. Este proceso de corrección de distorsión radial mejora significativamente
el proceso posterior de detección de ĺıneas como se verá más adelante.

Figura 3.7: Patrones de franjas capturadas por la cámara del robot móvil te-
rrestre. (a) Franja en dirección x. (b) Franja en dirección y.

3.5. Detección de ĺıneas de carril

En esta sección se van a aplicar los métodos analizados para realizar detec-
ción de ĺıneas de carril. Se evalúa el funcionamiento del algoritmo propuesto
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Figura 3.8: Extracción de fase con el método de corrimiento de fase. (a) Fase en
dirección x. (b) Fase en dirección y.

Figura 3.9: Corrección de distorsión utilizando los parámetros estimados. (a)
Imagen con distorsión. (b) Imagen sin distorsión.

para la detección de ĺıneas de carril en diferentes escenas como se muestra en la
figura 3.10 (las secuencias de video fueron tomadas de una base de datos pública
disponible en https://bdd-data.berkeley.edu/).

En el primer paso, se aplica el método de Canny para detectar los contornos
de la escena observada. Para la figura 3.10(a), el resultado de la detección de
contornos se muestra en la figura 3.11(a). En el segundo paso se obtiene la
transformada de Hough para detección de ĺıneas. La figura 3.11(b) muestra la
transformada de Hough correspondiente a los contornos detectados mostrados
en la figura 3.11(a). En el plano de Hough, las ĺıneas de carril de interés deben
corresponder a los dos picos de mayor intensidad. Para fines ilustrativos, las
ĺıneas detectadas son desplegadas en la imagen de entrada como se muestra en
la figura 3.11(c).

De la figura 3.11(c) se puede observar que la detección de ĺıneas de carril
presenta una desviación considerable. Las ĺıneas detectadas están desalineadas
respecto a las ĺıneas de carril reales debido a errores en la detección. Para mejorar
la exactitud en la detección de ĺıneas de carril, se usa un filtro de ventana para
discriminar contornos ajenos a la pista, y una máscara Gaussiana para mejorar
el espacio de búsqueda en el plano de Hough.
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Figura 3.10: Capturas de tres secuencias de video para la evaluación del método
propuesto. (a) Imagen en donde la mayor parte de la escena no corresponde a la
pista. (b) Imagen en donde las ĺıneas de carril son curvas. (c) Imagen en escenas
con ĺıneas de carril discontinuas y múltiples carriles.

3.5.1. Filtro de ventana

Además de los contornos que corresponden a las ĺıneas de carril, en la escena
existen contornos que corresponden a otros objetos en la escena. Por ejemplo,
árboles, arbustos, postes de ĺıneas eléctricas, otros veh́ıculos, señales de tránsito,
etc. Los contornos adicionales en la escena introducen poliĺıneas adicionales en el
plano de Hough. Las poliĺıneas adicionales son ruido que incrementa la dificultad
para hallar los picos de intensidad máxima que corresponden a las ĺıneas de carril
de interés. Para reducir esta fuente de ruido, se empleó un filtro de ventana con
ε = para suprimir todos los contornos no útiles para la detección de las ĺıneas
de interés, como se muestra en la figura 3.11(d).

Se debe mencionar que al eliminar los contornos que no corresponden a la
pista también se acelera el proceso de obtención de la transformada de Hough.
Esto se debe a que al reducir el número de contornos, también se reduce el núme-
ro de poliĺıneas que se deben acumular como se muestra en la figura 3.11(e). En
la figura 3.11(f) se muestra que la detección de las ĺıneas de carril ha mejorado,
pero aún existe un error que se debe reducir.

3.5.2. Máscara Gaussiana

En la figura 3.11(e) se puede observar que hay más de dos picos de intensidad
máxima. Esto se debe primero a que cada ĺınea de carril genera dos ĺıneas
asociadas a sus contornos. Además, en la escena no solo existen dos ĺıneas de
carril, sino tres. Por esta razón, en el plano de Hough aparecerán más de dos
picos de intensidad máxima en lugar de solo dos picos como se esperaŕıa en el
caso ideal.

Para evitar este problema, se utilizaron las máscaras Gaussianas para limitar
el área de búsqueda en el plano de Hough a aquellas regiones donde se espera
encontrar los pico de intensidad máxima. Con una máscara, se espera detectar
el pico de intensidad que representa una ĺınea de carril de interés. Por motivos
ilustrativos, las dos máscaras Gaussianas son presentadas al mismo tiempo en
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Figura 3.11: (a)-(c) Detección de ĺıneas de carril sin el uso filtros. (d)-(f) De-
tección de ĺıneas usando el filtro de ventana para discriminación de contornos.
(g)-(i) Detección de ĺıneas utilizando el filtro de ventana y la máscara Gaussiana.

el plano de Hough, como se muestra en la figura 3.11(h). De esta forma, la
exactitud en la detección de las ĺıneas de carril mejora significativamente como
se observa en la figura 3.11(i).

3.5.3. Ĺıneas de carril curvas

La robustez del algoritmo propuesto se verificó procesando una secuencia de
video donde aparecen ĺıneas de carril curvas, ver figura 3.10(b). En este experi-
mento se encontró que el método propuesto funciona correctamente detectando
curvas de hasta φ = 10 grados respecto a la dirección de desplazamiento. En la
figura 3.12 se muestra el resultado del procesamiento de la detección de ĺıneas
de carril en la escena observada.

De forma similar a la prueba anterior, se observa que la exactitud en la
detección de ĺıneas de carril mejora con la aplicación del filtro de ventana y la
máscara Gaussiana. Observe que la cámara fue colocada de tal forma que en la
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Figura 3.12: Evaluación del funcionamiento del algoritmo propuesto en ĺıneas
curvas. (a)-(c) Detección de ĺıneas de carril sin el uso filtros. (d)-(f) Detección
de ĺıneas usando el filtro de ventana para discriminación de contornos. (g)-(i)
Detección de ĺıneas utilizando el filtro de ventana y la máscara Gaussiana.

imagen la pista abarca la mayor parte de la imagen. Esto es conveniente debido
a que la información capturada por la imagen corresponden en mayor medida a
las ĺıneas de carril de interés. Por lo tanto, la acumulación de poliĺıneas asociadas
a los contornos detectados forman picos de intensidad bien definidos en el plano
de Hough, como se muestra en la segunda columna de la figura 3.12.

Con esta prueba, se confirma que es recomendable, tanto el uso de los filtros
propuestos, como una buena colocación de la cámara para capturar en mayor
medida la información de la pista reduciendo al mismo tiempo los contornos
innecesarios para la detección de ĺıneas de interés.

También se puede mencionar que el algoritmo propuesto es capaz de detectar
ĺıneas rectas con bajo error cuando las ĺıneas de carril son curvas. Para esto,
se reduce el campo de visión de la cámara para limitar la longitud observada
del carril en la escena. En otras palabras, las ĺıneas de carril curvas se pueden
aproximar a ĺıneas rectas a corta distancia desde la cámara. Aśı, ajustando
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Figura 3.13: Evaluación del funcionamiento del algoritmo propuesto en escenas
de la vida real. (a)-(c) Detección de ĺıneas de carril sin el uso filtros. (d)-(f)
Detección de ĺıneas usando el filtro de ventana para discriminación de contornos.
(g)-(i) Detección de ĺıneas utilizando el filtro de ventana y la máscara Gaussiana.

la extensión del campo observado en la escena se puede obtener una buena
detección de las ĺıneas de carril aún cuando estas presenten curvatura.

3.5.4. Ĺıneas discontinuas y múltiples carriles

Se realizó otra prueba en donde el método propuesto se evaluó procesando
una secuencia de video capturada en una zona urbana t́ıpica. En este nuevo
escenario, aparecen otras dificultades tales como ĺıneas discontinuas, múltiples
carriles alrededor de la pista observada, oclusiones por otros veh́ıculos, ĺıneas de
contención, señales de tránsito, y fachadas de edificios, entre otros, ver figura
3.10(c).

En esta prueba, la transformada de Hough detecta una mayor cantidad de
ĺıneas que están presentes en la escena, mientras que las ĺıneas de carril de
interés se vuelven menos visibles debido a las discontinuidades de los trazos y
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oclusiones. Aún en este escenario complejo, el método de detección de ĺıneas de
carril propuesto logra buenos resultados y destaca la mejora que proporciona la
aplicación del filtro de ventana y Gaussiano como se muestra en la figura 3.13.

En la implementación actual, el método propuesto detecta un carril. Sin
embargo, cuando se realiza una cambio de carril, el método propuesto mantendrá
la detección en el carril inicial y no en el carril actual. Este caso se puede detectar
usando la variable x que indica la posición relativa respecto al carril. En el plano
de referencia, las ĺıneas de carril son x = 0 y x = 1. Por lo tanto, la posición
del veh́ıculo será x = 1/2 cuando el veh́ıculo está centrado en el carril. De esta
forma si la posición x es mayor que +1, indicará que el veh́ıculo ha cambia al
carril derecho. De forma similar, si la posición x es menor que cero, entonces
el veh́ıculo se encontrará en el carril izquierdo. Se puede desarrollar una rutina
que detecte estas transiciones y aśı restablecer el enfoque en el nuevo carril del
veh́ıculo.

3.6. Estimación de posición y orientación

Se utilizaron 100 secuencias de video que presentan diferentes escenarios de
manejo, horas del d́ıa, y cambios climáticos (las secuencias de video fueron toma-
das de una base de datos pública disponible en https://bdd-data.berkeley.

edu/). Cada secuencia de video es procesada con el algoritmo desarrollado. Los
resultados son capturados y presentados en las figuras 3.14-3.17. De los resul-
tados obtenidos, se encontraron escenarios donde la detección de ĺıneas es más
complicada, tales como, ĺıneas de carril con oclusión, ĺıneas curvas, cambio de
carril, carril sin ĺıneas y oclusión por veh́ıculos. Algunos de estos problemas
fueron mencionados en las evaluaciones anteriores.

El problema de oclusión de ĺıneas se encuentra presente en múltiples se-
cuencias de video. Las ĺıneas de carril son fuentes importantes para el método
propuesto de estimación de posición y orientación del veh́ıculo. La pérdida de
esta fuente de información afecta los resultados de las mediciones debido a que
la transformada de Hough no puede detectar ĺıneas ocluidas. En consecuencia,
la posición y orientación determinada son erróneas. Para evitar este problema,
se propuso un método de estimación usando mı́nimos cuadrados recursivos con
factor de olvido que aprovecha el resultado de estimaciones previas para calcular
una nueva posición y orientación actual.

En la figura 3.18 se presenta una secuencia de video donde las ĺıneas de ca-
rril se pierden de vista por oclusión de un veh́ıculo. Sin embargo, el algoritmo
propuesto es capaz de mantener una estimación de ĺınea estable aprovechando
las estimaciones realizadas antes de la oclusión. Para esto, las ĺıneas son de-
terminadas por la posición y orientación calculada por el método de mı́nimos
cuadrados recursivos con factor de olvido analizado previamente en el caṕıtulo
2.5. El resultado de la predicción de ĺıneas de carril en esta prueba se muestra
en la figura 3.18(a)-(e). Estos resultados demuestran la robustez del algoritmo
propuesto aún cuando las ĺıneas de carril no son visibles temporalmente en la
pista, como se muestra en la figura 3.18(f)-(j).
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Figura 3.14: Primer conjunto de secuencias de v́ıdeo. (a)-(y) Capturas de se-
cuencias de video para evaluar el desempeño del método propuesto en diferentes
escenarios.

3.7. Navegación de un robot móvil terrestre

Las evaluaciones previas del algoritmo propuesto fueron realizadas usando
secuencias de video obtenidas de una base de datos que colecta rutinas de na-
vegación de automóviles. De estas evaluaciones se encontró que la estimación
de posición y orientación del veh́ıculo usando es método propuesto es eficiente
y robusta. Para el siguiente experimento, se evaluará una secuencia de video de
navegación de un robot móvil terrestre en una pista experimental.

El procesamiento de la secuencia de video es similar a las evaluaciones an-
teriores. Sin embargo, la cámara utilizada en el robot móvil presenta distorsión
radial considerable, como se muestra en la figura 3.19(a)-(e). La distorsión ra-
dial ocasiona una mala visualización y alto error en la detección de ĺıneas de
carril debido a que las ĺıneas rectas se convierten en ĺıneas cuervas. Este pro-
blema se resolvió usando el método de corrección de distorsión radial descrito
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Figura 3.15: Segundo conjunto de secuencias de v́ıdeo. (a)-(y) Capturas de se-
cuencias de video para evaluar el desempeño del método propuesto en diferentes
escenarios.

previamente en esta tesis. Los parámetros de distorsión fueron estimadas pre-
viamente en la sección 3.4. La imagen corregida proporciona nuevos puntos en
las coordenadas del plano y son utilizados para detectar los contornos de la
imagen, como se observa en la figura 3.19(f)-(j). Después, se detectan las ĺıneas
de carril con la transformada de Hough y se limitan la búsqueda de picos de
intensidad máxima con las máscaras Gaussianas, como se ilustra en la figura
3.19(k)-(o). Finalmente, se estiman la posición y orientación usando las ĺıneas
de carril disponibles.

En la figura 3.19(p)-(t), se presentan los resultados obtenidos y se mostró
la robustez del algoritmo propuesto aún usando cámaras con distorsión radial.
La estimación de posición y orientación de un robot móvil es eficiente y las
estimaciones realizadas pueden emplearse para realizar retroalimentación para
el controlador del robot móvil.
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Figura 3.16: Tercer conjunto de secuencias de v́ıdeo. (a)-(y) Capturas de se-
cuencias de video para evaluar el desempeño del método propuesto en diferentes
escenarios.

3.8. Discusiones

Los resultados experimentales obtenidos han demostrado la eficiencia y la ro-
bustez del método propuesto en diferentes escenarios del mundo real. Se mostró
la utilidad del modelo de cámara pinhole aún cuando se utilizan cámaras que
presentan distorsión radial. Esto es posible gracias a la estimación de paráme-
tros de distorsión radial y su uso para corrección de distorsión en las imágenes
procesadas.

La primera etapa del método propuesto consiste en detectar los contornos de
la escena. Se empleó el método de Canny para detección de contornos debido a su
eficiencia computacional.Se usó un filtro Gaussiano con una desviación estándar
de
√

2 para minimizar el ruido de las imágenes de entrada. Los contornos son
suprimidos mediante un umbral para las intensidades que sea mayor a 0,35 y
un umbral para las intensidades que sea menor a 0,65. Posteriormente, se usó
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Figura 3.17: Cuarto conjunto de secuencias de v́ıdeo. (a)-(y) Capturas de se-
cuencias de video para evaluar el desempeño del método propuesto en diferentes
escenarios.

un filtro de ventana para separar la información entre la pista y otros objetos
de la escena.

En una segunda etapa, se aplicó la transformada de Hough en coordenadas
paralelas para detección de ĺıneas. En el plano de Hough, se usó un máscara
Gaussiana para limitar la región de búsqueda de las ĺıneas de carril esperadas
en un área espećıfica. Las regiones de interés fueron determinadas usando como
referencia las detecciones previas de ĺıneas de carril. De los resultados obtenidos,
se comprobó que los filtros usados mejoraron significativamente el proceso de
detección de ĺıneas. Asimismo, se redujo el tiempo de respuesta del método
propuesto al implementar los algoritmos usando cómputo paralelo.

En la última etapa, la posición y orientación del veh́ıculo se estimó usando
la matriz homograf́ıa del sistema y las ĺıneas de carril detectadas. Finalmente,
se utilizó el método de mı́nimos cuadrados recursivos con factor de olvido para
proporcionar estimaciones cuando las ĺıneas de carril no son visibles o vaŕıan sig-
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Figura 3.18: Secuencia de imágenes para la evaluación del algoritmo propuesto
en ĺıneas de carril no visibles. (a)-(e) Predicción de ĺıneas de carril en oclusión
por un veh́ıculo, y (f)-(i) su visualización de los contornos detectados, respecti-
vamente.

nificativamente por ruido aleatorio. Este método permite suavizar la transición
entre detecciones de ĺıneas de carril, y en general, la estabilidad del sistema.

Los resultados mostraron que es posible detectar ĺıneas de carril curvas aún
cuando el método propuesto fue diseñado asumiendo ĺıneas de carril rectas. Sin
embargo, si la curvatura de las ĺıneas es mayor que 10 grados respecto a la direc-
ción de desplazamiento, la precisión en la estimación de posición y orientación se
reduce. En este caso, se puede incrementar la precisión reduciendo el campo de
visión para limitar la longitud observada de la pista y la aproximación a ĺıneas
rectas siga siendo válida.

El método propuesto es robusto ante la presencia de brillo ambiental y sa-
turación. Esta fuente de ruido ocasiona cambios en la intensidad de los ṕıxeles
provocando ĺıneas adicionales en la transformada de Hough. Aún aśı, se logró
una buena detección de ĺıneas de carril mediante el uso de las máscaras Gaus-
sianas propuestas.

De la navegación del robot móvil en la pista experimental se observaron los
siguientes comportamientos del algoritmo desarrollado. Primero, los azulejos del
piso ocasionaron ĺıneas adicionales en la detección de contornos, y en el plano
de Hough, el pico de intensidad máxima pertenećıa a las ĺıneas de los azulejos
debido a su trazo recto, en contraste a la curvatura de las ĺıneas de interés
que limitan la pista. Para atenuar esta fuente de ruido, se redujo el tamaño
del filtro de ventana en la detección de contornos hasta ajustar las ĺıneas de
carril de interés. Segundo, se ajustó el campo de observación en la escena para
detectar las ĺıneas curvas del carril en la pista experimental. Cuando el campo
de observación es pequeño, las ĺıneas de carril no se visualizan correctamente.
Cuando el campo de observación es grande, se visualizaban ĺıneas adicionales
que no son útiles. Ambos casos provocan errores en la detección de ĺıneas de
carril. Para reducir el efecto de estas fuentes de error, se incrementó el factor de
olvido del estimador de mı́nimos cuadrados y se ajustó el campo de observación
a un punto medio entre el campo cercano y lejano de la cámara. Por último,
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Figura 3.19: Evaluación del algoritmo propuesto en una secuencia de video de
la navegación de un robot móvil terrestre. (a)-(e) Imágenes de entrada con dis-
torsión radial. (f)-(j) Detección de contornos con su respectivo filtro de ventana
para las imágenes (a)-(e) con distorsión corregida. (k)-(o) Picos de intensidad
máxima limitado por la región de interés en el plano de Hough. (p)-(t) Resul-
tados de detección de ĺıneas de carril y estimación de posición y orientación del
robot móvil terrestre.

los giros del robot móvil en las curvas no son constantes debido al diseño del
carril. Las estimaciones son erróneas cuando el robot realiza rotaciones bruscas.
En estos casos, el factor de olvido del predictor por mı́nimos cuadrados se debe
reducir; sin embargo, esto hace que el algoritmo sea sensible al ruido aleatorio
como se describió anteriormente.



Capı́tulo 4
Conclusiones

En este trabajo de tesis se abordó el problema de estimación de la posición
y orientación de un robot móvil terrestre usando ĺıneas de carril como fuente de
información. El método propuesto se diseñó considerando el enfoque de sistemas
opto-digitales para el procesamiento de imágenes. Para ello, se analizaron los
modelos f́ısicos del proceso de formación de imagen y la flexibilidad que ofrece
la implementación de algoritmos en computadoras digitales para procesamiento
de datos.

En los algoritmos de estimación propuestos, se consideró el modelo de cáma-
ra pinhole para simplificar el análisis y reducir la complejidad de los modelos
matemáticos. Para hacer válidos estos algoritmos en cámaras que presentan
distorsión debido a la lente, se consideró una etapa adicional de corrección de
distorsión radial. Para definir la posición y orientación relativa entre un plano de
referencia y la cámara, se consideró la relación entre homograf́ıas y los paráme-
tros intŕınsecos y extŕınsecos de la cámara.

Para la estimación de posición y orientación usando ĺıneas de carril como
referencia, se propuso un algoritmo que consiste en dos etapas. Primero, se
realiza detección de las ĺıneas de carril, y, segundo, se determina la posición y
orientación del robot móvil terrestre a partir de las ĺıneas de carril detectadas.
Se empleó el método de Canny para detección de contornos en la escena. Se
implementó la transformada de Hough en coordenadas paralelas para detección
de ĺıneas de carril.

Para mejorar la exactitud en la detección de ĺıneas de carril, se propuso el
uso de un filtro de ventana para separar la información entre la pista y otros
objetos de la escena que interfieren con la detección. En el plano de Hough, se
usó una máscara Gaussiana para limitar la región de búsqueda de las ĺıneas de
carril al área donde se esperaŕıa encontrarlas en base a imágenes previas. Se
agregó una etapa de corrección de distorsión radial para mejorar los resultados
de la detección aún usando una cámara convencional de bajo costo.

El algoritmo de navegación visual propuesto fue validado procesando secuen-
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cias de v́ıdeo tomadas del mundo real. La cámara fue calibrada para obtener
tanto los parámetros intŕınsecos, extŕınsecos y distorsión radial. Los resultados
obtenidos mostraron la eficiencia y robustez del método propuesto. El costo
computacional fue reducido por la discriminación de contornos en áreas que
no corresponden a la pista. También, se incrementó la velocidad de respuesta
implementando los algoritmos en computo paralelo usando una unidad de pro-
cesamiento gráfica (GPU) con arquitectura unificada de dispositivos de cómputo
(CUDA por sus siglas en inglés Compute Unified Device Architecture). Más aún,
debido a su simplicidad, los algoritmos desarrollados pueden ser implementados
fácilmente en otras plataformas computacionales y con otros lenguajes de pro-
gramación. Los resultados obtenidos mostraron que lo métodos opto-digitales
son factibles para aplicaciones de navegación visual e instrumentación óptica en
veh́ıculos reales.

Como trabajo futuro, se debe considerar el análisis de fuentes de error para
robustecer el método propuesto a perturbaciones tales como ĺıneas de carril cur-
vas, señalamientos, semáforos, automóviles, cruces peatonales, y baja visibilidad
por lluvia, sombras, y neblina entre otras.



Apéndice A
Mı́nimos cuadrados recursivos con
factor de olvido

El método de mı́nimos cuadrados es un proceso que se usa para predecir los
parámetros de un sistema optimizando los resultados de datos experimentales.
Este método utiliza un criterio basado en minimizar el error obtenido entre los
datos experimentales y la salida del modelo teórico dado por

ξ = (y − ỹ)2 = (y − φT θ̃)2, (A.1)

donde φ es el vector de variables de regresión y θ̃ son los parámetros del sistema.
En el caso espećıfico para múltiples mediciones, la Ec. (A.1) se expande como

J(θ̃) =

n∑
i=0

(
yi − φTi θ̃i

)2

= ETE, (A.2)

donde
E =

[
ξ1, ξ2, ξ3, . . . , ξn

]T
. (A.3)

Agregando el factor de olvido para reducir la importancia de las mediciones
antiguas, la Ec. (A.2) se reescribe como

J(θ̃, λ) =
n∑
i=0

λn−i
(
yi − φiθ̃i

)2

=
[
Y − ΦΘ̃

]T
Λ
[
Y − ΦΘ̃

]
, (A.4)

donde λ es el factor de olvido, y

Φ =
[
φT1 ,φ

T
2 ,φ

T
3 , . . . ,φ

T
n ,
]
,

Θ̃ =
[
θ̃1, θ̃2, θ̃3, . . . , θ̃n

]
,

Y =
[
y1, y2, y3, . . . , yn

]T
,

Λ = diag(λn−1, λn−2, λn−3, . . . , λ0).

(A.5)
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Desarrollando la Ec. (A.4), se obtiene la expresión a minimizar como

J(θ̃, λ) = Y TY − Y TΛΦΘ̃− ΦT Θ̃TΛY + ΦT Θ̃TΛΘ̃Φ.
(A.6)

Los parámetros del sistema se pueden estimar usando la derivada de la fun-
ción J con respecto al vector de parámetros e igualando a cero como

∂J

∂θ̃
= −2ΦTΛY + 2ΦTΛΦΘ̃ = 0,

−ΦTΛY + ΦTΛΦΘ̃ = 0.

(A.7)

La solución de esta ecuación nos lleva a la estimación de los parámetros Θ̃ del
modelo dados por

Θ̃ = (ΦTΛΦ)−1ΦTΛY. (A.8)

La Ec. (A.8) se puede utilizar recursivamente para realizar estimaciones ite-
rativamente usando estimaciones previas. La recursividad permite optimizar
adaptativamente el cálculo de una nueva estimación y despreciar las paráme-
tros antiguos del sistema. Para esto, definimos las estimaciones de los parámetros
como

Θ̃k−1 = D−1
k−1Zk−1, (A.9)

donde

Dk−1 = ΦTk−1ΛΦk−1,

Zk−1 = ΦTk−1ΛYk−1,

Φk−1 =
[
φT1 ,φ

T
2 ,φ

T
3 , . . . ,φ

T
k−1,

]
,

Yk−1 =
[
y1, y2, y3, . . . , yk−1

]T
.

(A.10)

De la misma manera, podemos deducir la estimación actual como

Θ̃k = D−1
k Zk, (A.11)

donde

Dk = λDk−1 + φTkφk, (A.12)

Zk = λZk−1 + φTk yk. (A.13)

Dado las definiciones previas, se pueden determinar los parámetros del sistema
Θk. Sin embargo, la inversa de la Ec. (A.12) no puede ser determinada directa-
mente. Para esto, se describirá una serie de pasos para calcular D−1

k y simplificar
la Ec. (A.11).

Partiendo de la Ec. (A.12) y multiplicando D−1
k por la izquierda, se obtiene

I = λD−1
k Dk−1 +D−1

k φTφk. (A.14)
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Después, se multiplica D−1
k−1 por la derecha a la ecuación previa, obteniendo

Dk−1 = λD−1
k +D−1

k φTkφkDk−1, (A.15)

y multiplicando φTk por la derecha a la Ec. (A.15), se tiene

Dk−1φ
T
k = λD−1

k φTk +D−1
k φTkφkDk−1φ

T
k . (A.16)

Por comodidad, la ecuación anterior se renombra como K, es decir,

K =
Dk−1φ

T
k

λ+ φkDk−1φ
T
k

= Dk−1φ
T
k . (A.17)

Al sustituir la Ec. (A.17) con la Ec. (A.15), se obtiene

Dk−1 = λD−1
k +KφkDk−1φ

T
k , (A.18)

y finalmente D−1
k se puede determinar como

D−1
k =

1

λ
(Dk−1 −KφkDk−1) . (A.19)

Los parámetros del sistema Θk se obtiene usando las Ec. (A.11) y (A.19)
como

Θ̃k =
1

λ

(
Dk−1 −KφkDk−1φ

T
k

)(
λZk−1 + φTk yk

)
,

= Θ̃k−1 +
1

λ
D−1
k−1φ

T
k yk −Kỹk −

1

λ
Kφkφ

T
k yk,

(A.20)

que se puede simplificar aún más usando la Ec. (A.18) obteniendo

Θ̃k = Θ̃k−1 +D−1
k φTk yk −Kỹ +

1

λ
Kφkφ

T
k yk −

1

λ
Kφkφ

T
k yk,

Θ̃k = Θ̃k−1 +Kξk.
(A.21)

De acuerdo al análisis de mı́nimos cuadrados recursivo con factor de olvido,
la implementación del algoritmo es simple para cualquier lenguaje de progra-
mación. El método posee grandes ventajas para su uso en diversas aplicaciones
de visión computacional. Para el caso espećıfico de aplicación en navegación
asistida de robots móviles, se utiliza para predecir la posición y orientación del
veh́ıculo. Las estimaciones previas permiten generar un filtro para suavizar la
detección de ĺıneas de carril. Debido a esto, se logra mantener estable la detec-
ción de ĺıneas aún cuando el carril no es visible en algunos instantes.
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Apéndice B
Rectificación de imágenes

La rectificación de imágenes es una técnica de gran importancia debido a
que permite el desarrollo de aplicaciones de captura de escenas tridimensionales
[62]. Espećıficamente, esta técnica ayuda a resolver el problema de búsqueda de
puntos de correspondencia para calcular la posición de objetos en el espacio.
La rectificación de imágenes permite determinar la profundidad de la escena y
posición relativa de los objetos usando visión estéreo [63,64].

En la literatura se han reportado varios métodos de rectificación de imágenes
explotando la geometŕıa epipolar [15,65–67]. El concepto de geometŕıa epipolar
simplifica el problema de búsqueda de puntos de correspondencia en un sistema
de cámara estéreo. En un sistema estéreo, las cámaras pueden ser diferentes y
estar desalineadas. En esta configuración, el punto de intersección entre la ĺınea
que une los centros de proyección de las cámaras y el plano imagen se denomina
eṕıpolos. Las ĺıneas que pasan por el eṕıpolo se conocen como ĺıneas epipolares.
Si e y e′ son los eṕıpolos en el plano imagen de la primera y segunda cámara,
respectivamente, entonces las ĺıneas epipolares están dadas como

` = H[e]×H[x], (B.1)

`′ = H[e′]×H[x′], (B.2)

donde x y x′ son puntos en la imagen de la primera y segunda cámara, respec-
tivamente. La relación entre ambas puntos se puede definir como una transfor-
mación proyectiva Gπ, dado que

x′ = H−1[GπH[x]]. (B.3)

Al sustituir la Ec. (B.1) en la Ec. (B.3), se obtiene

`′ = e′ ×GπH[x]. (B.4)

Esta ecuación se puede reescribir usando la matriz antisimétrica [e′]× para re-
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presentar el producto cruz como

`′ = [e′]×Gπ︸ ︷︷ ︸
F

H[x], (B.5)

donde F es la matriz fundamental y

[e′]× =

 0 −e′z e′y
e′z 0 −e′x
−e′y e′x 0

 . (B.6)

En la siguiente sección, se desarrollará el método de transformación lineal directa
para estimación de la matriz fundamental. Posteriormente, se mostrará cómo
usar la matriz fundamental para realizar rectificación de imágenes estéreo.

B.1. Estimación de la matriz fundamental

La matriz fundamental F establece la relación entre los puntos de corres-
pondencia de dos imágenes que capturan la misma escena. Este método de
estimación, no requiere una calibración expĺıcita de las cámaras. Usando puntos
de correspondencia (x,x′), la matriz fundamental se puede definir como

H[x′T ]FH[x] = 0. (B.7)

Si las coordenadas de los puntos de correspondencia (x,x′) son conocidas, en-
tonces, usando la Ec. (B.7), se puede calcular los elementos de la matriz F . Es-
pećıficamente, la ecuación correspondiente al punto de correspondencia (x, y, 1)
y (x′, y′, 1) es

x′xF11 + x′yF12 + x′F13+

+ y′xF21 + y′yF22 + y′F23+

+ xF31 + yF32 + F33 = 0. (B.8)

Factorizando las variables desconocidas, se obtiene

[x′x, x′y, x′, y′x, y′y, y′, x, y, 1]f = 0n, (B.9)

donde f = [F11 F12 F13 F21 F22 F23 F31 F32 1]T .
La matriz fundamental tiene nueve elementos a determinar; sin embargo, solo

existen ocho incógnitas porque la matrices fundamentales son únicas excepto
escala. Por lo tanto, se necesitan al menos ocho puntos de correspondencia para
estimar una matriz fundamental. Con n puntos de correspondencia, se obtiene
la siguiente ecuación matricial:

x′1x1 x′1y1 x′1 x1y
′
1 y′1y1 y′1 x1 y1 1

x′2x2 x′2y2 x′2 x2y
′
2 y′2y2 y′2 x2 y2 1

...
...

...
...

...
...

...
... 1

x′nxn x′nyn x′n xny
′
n y′nyn y′n xn yn 1

f = Af = 0n, (B.10)
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que se puede resolver para f usando el método de descomposición en valores sin-
gulares. En la siguiente sección, se mostrará cómo emplear la matriz fundamental
para realizar rectificación de imágenes capturadas por un sistema estéreo.

B.2. Rectificación

Partiendo de la Ec. (B.5), observamos que la matriz fundamental

F = [e′]×Gπ (B.11)

contiene la homograf́ıa del plano epipolar Gπ y los eṕıpolos e y e′ de ambas
cámaras. Esta matriz F relaciona los puntos de ambas imágenes. Por lo tanto,
para cada par de puntos de correspondencia (x, x′), la matriz fundamental F
satisface

H[x′]TFH[x] = 0. (B.12)

Una propiedad de las imágenes rectificadas es que los eṕıpolos se encuentran
en la coordenada i = [1, 0, 0]T . En este caso, la matriz antisimétrica de i es
la matriz fundamental del sistema rectificado. La nueva matriz fundamental se
define como

F̄ = [i]× =

0 0 0
0 0 −1
0 1 0

 . (B.13)

Sin embargo, para llevar un sistema estéreo general a un sistema estéreo rectifi-
cado equivalente, es necesario transformar las imágenes originales en un par de
imágenes rectificadas. Esta transformación implica el uso de un par de homo-
graf́ıas que se construyen a partir de la matriz fundamental del sistema.

Las homograf́ıas requeridas deben llevar los eṕıpolos del sistema al punto
al infinito i = [1, 0, 0]T . Representamos las homograf́ıas necesarias como G y
G′ que se aplicarán a las imágenes I e I ′, respectivamente. Los puntos x y x′

del par de imágenes son transformados de tal forma que la imagen resultante
satisfaga la geometŕıa epipolar de un sistema estéreo rectificado. Estos puntos
están dados por

H[x̄] = GH[x] y H[x̄′] = G′H[x′]. (B.14)

Los puntos de las imágenes rectificadas cumplen la misma restricción dada
por la Ec. (B.12). Por lo tanto, sustituyendo los puntos proyectados, se obtiene

H[x′]TG′T [i]×GH[x] = 0. (B.15)

De la Ec. (B.15) se puede observar que la matriz fundamental F del sistema y
la matriz fundamental F̄ de un sistema rectificado están relacionadas como

F = G′T F̄G. (B.16)

Las homograf́ıas G y G′ son independientes. Cada una de estas matrices contiene
ocho incógnitas por ser únicas excepto escala; es decir

G =

ua ub uc
va vb vc
wa wb 1

 , (B.17)
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y de forma similar para G′.
La matriz G se puede descomponer en dos transformaciones simples para

simplificar el proceso de estimación. Espećıficamente, la matriz G se descompone
en

G = GaGp, (B.18)

donde Ga es una transformación af́ın y Gp es la transformación proyectiva que
minimiza la distorsión. La transformación Gp se define como

Gp =

 1 0 0
0 1 0
wa wb 1

 , (B.19)

por lo que podemos escribir Ga como

Ga = GG−1
p =

ua − ucwa ub − ucwb uc
va − vcwa vb − vcwb vc

0 0 1

 . (B.20)

De la misma forma definimos las homograf́ıas G′a y G′p.
Anteriormente, se mencionó que las homograf́ıas G y G′ son independientes

para cada imagen. Sin embargo, w y w′ son vectores de correspondencia que
dependen de la dirección z = [µ, λ, 0]T y su eṕıpolo e en I, tales que

w = [e]×z y w′ = Fz. (B.21)

El par resultante w y w′ representan ĺıneas epipolares. Existen varios vec-
tores de dirección z que satisfacen la condición para la rectificación de imagen.
Por lo tanto, es necesario encontrar un vector z que minimice la distorsión. Para
esto, se usa el siguiente criterio de minimización

n∑
i=1

[
wT (pi − pc)
wTpc

]2

. (B.22)

Esta sumatoria incluye la transformación que sufre cada ṕıxel en la imagen
original y su respectiva imagen transformada por la homograf́ıa correspondiente.
En el proceso de minimización, se usa el promedio de los puntos pc =

∑n
i=1 pi

para normalizar las coordenadas ṕıxel. Asimismo, se busca que el vector w
introduzca la mı́nima diferencia entre todos los puntos de la imagen.

La sumatoria (B.22) se puede expresar de forma matricial como

wTPPTw

wTpcp
T
c w

, (B.23)

donde P es una matriz 3× n definida como

P =
[
p1 − pc p2 − pc . . . pn − pc

]
. (B.24)
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Sustituyendo las definiciones de la Ec. (B.21) en la Ec. (B.23) para ambas imáge-
nes se obtiene

zT

A︷ ︸︸ ︷
[e]T×PP

T [e]T× z

zT [e]T×pcp
T
c [e]T×︸ ︷︷ ︸

B

z
+
zT

A′︷ ︸︸ ︷
FTPPTF z

zT FTpcp
T
c F︸ ︷︷ ︸

B′

z
, (B.25)

que podemos reescribir de forma compacta como

zTAz

zTBz
+
zTA′z

zTB′z
, (B.26)

donde A,B,A′ y B′ son matrices de 3 × 3 que dependen de los puntos de las
imágenes. La componente w del vector z es 0, por lo tanto, la información útil
se encontrará en las primeras dos columnas de las matrices A, B, A′ y B′. Esto
permite reducir las matrices a bloques de 2× 2. Explotando esta caracteŕıstica,
podemos reducir el bloque superior izquierdo de PPT a

PPT =
MN

12

[
N2 − 1 0

0 M2 − 1

]
, (B.27)

donde N y M son el ancho y alto de la imagen, respectivamente. De forma
similar, para pcp

T
c tenemos

pcp
T
c =

1

4

[
(N − 1)2 (N − 1)(M − 1)

(N − 1)(M − 1) (M − 1)2

]
. (B.28)

Usando estos resultados, las matrices 2×2 de A,B,A′ y B′ pueden ser obte-
nidos. Dicho lo anterior, solamente el vector de dirección z esta por determinar.
Se divide en términos la suma (B.26) obteniendo dos estimaciones del vector z.
Para cada vector z, se busca el eigenvector con el menor eigenvalor de las matri-
ces simétricas positivas (A y A′). El promedio de los vectores z es el adecuado
para cumplir el criterio de la minimización, es decir

z =

(
z̃1

‖ z̃1 ‖
+

z̃2

‖ z̃2 ‖

)
/2. (B.29)

De esta manera, las homograf́ıas Gp y G′p están disponibles.
Con las homograf́ıas calculadas, los eṕıpolos se encontrarán en el infinito.

Sin embargo, para la rectificación es necesario asegurar que estén a la dirección
i = [1, 0, 0]T . La transformación af́ın se encarga de mantener esa dirección. Para
fines prácticos se descompone esta transformación como

Ga = GsGr, (B.30)

donde Gr y Gs son la transformaciones de similitud y de corte, respectivamente.
La transformación de similitud realiza una rotación y traslación a la imagen para
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que el eṕıpolo se encuentre en la dirección i = [1, 0, 0]T alineando a la dirección
v. Esta homograf́ıa se define como

Gr =

vb − vcwb vcwa − va 0
va − vcwa vb − vcwb vc

0 0 1

 . (B.31)

La matriz de la Ec. (B.31) contiene elementos desconocidos. Únicamente
se ha calculado w para la transformación proyectiva. Los elementos de v se
eliminan desarrollando la Ec. (B.16), como

F =

vaw′a − v′awa vbw
′
a − v′awb vcw

′
a − v′a

vaw
′
b − v′bwa vbw

′
b − v′bwb vcw

′
b − v′b

va − v′cwa vb − v′cwb vc − v′c

 . (B.32)

Usando el último renglón y columna de la matriz, se determina que

va = F31 + v′cwa, (B.33)

vb = F32 + v′cwb, (B.34)

vc = F33 + v′c, (B.35)

v′a = F13 − vcw′a, (B.36)

v′b = F23 − vcw′b. (B.37)

Sustituyendo las Ec. (B.33)-(B.37) a la Ec. (B.31), se obtiene

Gr =

F32 − wbF33 waF33 − F31 0
F31 − waF33 F32 − wbF33 F33 + v′c

0 0 1

 , (B.38)

y del mismo modo para G′r tenemos

G′r =

w′bF33 − F23 F13 − w′aF33 0
w′aF33 − F13 w′bF33 − F23 v′c

0 0 1

 . (B.39)

Ambas matrices contienen el elemento v′c que involucra una traslación relaciona-
da a las imágenes, alineando los puntos de manera horizontal. El valor numérico
de v′c es cero para la mı́nima traslación para cualquier imagen.

Las transformaciones Gp y Gr son suficientes para realizar la rectificación
de imágenes. Sin embargo, la rectificación usando las dos homograf́ıas genera
una distorsión en la parte horizontal de las imágenes. Por otro lado, la transfor-
mación de corte Gs minimiza la distorsión generada por la rectificación. Esta
transformación solo afecta los puntos de la coordenada u, tales que

Gs =

Sa Sb 0
0 1 0
0 0 1

 . (B.40)
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El primer renglón de la transformación Gs se determina usando dos criterios
que evalúan el comportamiento de la transformación proyectiva de la imagen.
El primer criterio mantiene la perpendicularidad de dos ĺıneas en la imagen (el
cruce de la ĺınea vertical m y la ĺınea horizontal n en el punto central), tales
que

(Gsn)T (Gsm) = 0. (B.41)

El segundo criterio conserva la relación de aspecto de la imagen

(Gsn)T (Gsn)

(Gsm)T (Gsm)
=
w2

h2
. (B.42)

Las Ec. (B.41) y (B.42) son polinomios cuadrados en dos dimensiones. Utili-
zando funciones paramétricas y curvas algebraicas se puede encontrar la solución
que satisface ambos criterios, como

Sa =
h2x2

v + w2y2
v

hw(xvyu − xuyv)
y Sb =

h2xuxv + w2yuyv
hw(xvyu − xuyv)

. (B.43)

La parte prima de esta transformación de corte se calcula de la misma manera.
La combinación de las transformaciones GsGrGp y G′sG

′
rG
′
p, rectifican las

imágenes I e I ′, respectivamente, con la mı́nima distorsión. En la siguiente
sección, se comprueba la validez de este método para la rectificación de imágenes
simulando un sistema estéreo no alineado.

Se realizó una prueba usando las imágenes de un sistema estéreo no alinea-
do que se muestran en la figura B.1. Trece puntos de correspondencia fueron
seleccionados manualmente de la escena. Usando el método de transformación
lineal directa, ver sección B.1, se encontró la siguiente matriz fundamental

F =

−0,0011 −0,1031 −0,1004
−0,1129 −0,0222 −0,7153
−0,1005 0,6659 −0,0135

 .
Con la matriz fundamental estimada, es posible encontrar ĺıneas epipolares a
partir de un punto en la imagen. Debido a esta propiedad, se puede validar
que la ĺınea epipolar en dirección z es el vector w de la homograf́ıa. Usando
el criterio de minimización descrito se encontró el vector w que minimiza la
distorsión al transformar los eṕıpolos hacia el infinito. Por lo tanto, con la Ec.
(B.19) se obtuvieron las siguientes homograf́ıas

Gp =

 1 0 0
0 1 0

−0,1273 1,9614 1

 y G′
p =

 1 0 0
0 1 0

0,1354 1,9940 1

 .
Después, las transformaciones de similitud se calculan usando las Ec. (B.38)

y (B.39). Las matrices resultantes fueron

Gr =

 0,6924 0,1023 0
−0,1023 0,6924 −0,0135

0 0 1

 y G′
r =

0,6883 −0,0985 0
0,0985 0,6883 0

0 0 1

 .
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Figura B.1: Escena experimental para el método de rectificación de imágenes.
(a)-(b) Un par de imágenes capturadas en diferentes perspectivas. (c)-(d) Imáge-
nes rectificadas.

Para la rectificación de imágenes es suficiente usar las homograf́ıas y las
matrices de similitud. Sin embargo, la distorsión se puede minimizar con la
transformación de corte. Esta transformación trata de mantener la relación de
aspecto y la forma de la imagen. Por consiguiente, usando la Ec. (B.40) se
obtuvieron las siguientes transformaciones

Gs =

0,3357 −2,9149 0
0 1 0
0 0 1

 y G′
s =

0,3157 −2,6452 0
0 1 0
0 0 1

 .
Finalmente, se generó una homograf́ıa por cada imagen con las combinacio-

nes de las transformaciones GsGrGp y G′sG
′
rG
′
p. Las homograf́ıas resultantes se

validaron calculando las imágenes rectificadas correspondientes como se mues-
tra en la figura B.1. Se puede observar que usando las imágenes rectificadas,
la búsqueda de puntos en la imagen (2D) se reduce a una búsqueda a lo largo
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de un renglón (1D). Además, al observar un punto de interés en la imagen I,
se forma una ĺınea recta con el mismo renglón en la imagen I ′ que contiene el
punto de correspondencia.

Para la aplicación de estimación de posición y orientación de un robot móvil,
el método de rectificación de imágenes estéreo puede se de utilidad para obtener
información tridimensional de la escena. Aśı, la posición y orientación del robot
en el espacio tridimensional puede estimarse con respecto a puntos de referencias
en la escena. Mientras el robot se desplaza, la cámara captura una secuencia
de imágenes que pueden considerarse fueron capturadas por un sistema estéreo
cuyas cámaras son idénticas, pero en diferentes poses. Como trabajo a futuro,
se propone analizar la implementación del método de rectificación de imágenes
para el problema general de navegación en el espacio tridimensional.
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Apéndice C
Segunda transformada de Hough

Se ha mostrado que las columnas de una matriz homograf́ıa corresponden
a las imágenes de puntos espećıficos en el plano de referencia. Espećıficamente,
el punto al infinito en la dirección x, el punto al infinito en la dirección y,
y el punto en el origen. En este trabajo de tesis, se analizó la posibilidad de
construir matrices homograf́ıa detectando las imágenes de los puntos que forman
sus columnas. La detección del punto en el origen no suele ser complicada. Por
otro lado, la detección de puntos al infinito puede llegar a ser dif́ıcil.

Un punto al infinito puede detectarse indirectamente como el punto de in-
tersección de ĺıneas paralelas. Para detectar ĺıneas, podemos usar la primera
transformada de Hough. Y, para detectar puntos de intersección, podemos usar
la segunda transformada de Hough con las ĺıneas detectadas por la primera
transformada.

La matriz homograf́ıa que contiene la posición y orientación del robot móvil
terrestre requiere dos puntos al infinito (uno en la dirección x y otro en la di-
rección y). Podemos usar las ĺıneas de carril para detectar el punto al infinito
en la dirección y; sin embargo, no hay información suficiente para detectar el
punto al infinito en la dirección x. En otras aplicaciones de navegación donde
estén disponibles patrones de gúıa, como pistas de aterrizaje de drones, la se-
gunda transformada de Hough seŕıa aplicable directamente. En este apéndice, se
describe el funcionamiento de la segunda transformada de Hough para trabajo
futuro en otras aplicaciones de navegación.

Considere un conjunto de ĺıneas lk, k = 1, . . . , n que intersectan en el punto
p. La segunda transformada de Hough permite encontrar con facilidad el punto
de concurrencia p representando las ĺıneas detectadas en el espacio diamante
[68].

Partiendo de la primera transformada de Hough, al sustituir la Ec. (2.82) en
la Ec. (2.84), se obtiene

d = H−1[S−TSH[p]] = PS−TS [p]. (C.1)
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Usando las matrices S+ y S− de la Ec. (2.83) y al sustituir en la Ec. (C.1), se
obtiene

d =


PD1

, D1 = S−T−1 S−1, si p ∈ I,

PD2 , D2 = S−T−1 S+1, si p ∈ II,

PD3 , D3 = S−T+1 S−1, si p ∈ III,

PD4
, D4 = S−T+1 S+1, si p ∈ IV,

(C.2)

donde I, II, III, IV son los cuadrantes del plano de la imagen.
Al utilizar el método del espacio diamante surge un problema al manejar los

arreglos de memoria en la computadora. Por un lado, la formación de la imagen
utiliza un espacio rectangular para recorrer todos los ṕıxeles en filas y columnas.
Por otro lado, el espacio diamante exige la acumulación de poliĺıneas en puntos
que están dispuestos en forma diagonal. Por lo tanto, el manejo de memoria, y el
proceso de acumulación de poliĺıneas en el espacio diamante es ineficiente. Para
acelerar este proceso se realiza una modificación al método con una rotación
de π/4 radianes, un escalamiento de

√
2/2 y una traslación de [1/2, 1/2]T . El

resultando es

p̂ =
1

2

[
1 −1
1 1

]
d+

1

2

[
1
1

]
, (C.3)

y en coordenadas homogéneas,

p̂ = H−1[TH[d]], donde T =

1 −1 1
1 1 1
0 0 2

 . (C.4)

Por lo tanto, se obtiene una proyección lineal como

p̂ = PRi
[p], donde Ri = TDi. (C.5)

La segunda transformada de Hough se utiliza para la detección de puntos
de concurrencia, mejor conocidos como vanishing points en la literatura y se
utilizan para estimar homograf́ıas [60]. A continuación, se describen los pasos
para la detección de puntos de concurrencia de un patrón cuadro-radial como
se muestra en la figura C.1.

Primero, se detectan los contornos del patrón usando el método de Canny
como se muestra en la figura C.1(b) y C.1(f). Los contornos detectados son
procesados por la primera transformada de Hough para detectar ĺıneas como se
muestra en la figura C.1(c) y C.1(g). Entonces, las ĺıneas detectadas son pro-
cesadas por la segunda transformada de Hough para detectar los tres puntos
de concurrencia requeridos como se muestra en la figura C.1(d) y C.1(h). Fi-
nalmente, los puntos de concurrencia detectados son usados para construir la
matriz homograf́ıa asociada al plano de referencia observado y al plano imagen
de la cámara.

Como trabajo futuro, se puede emplear la primera y segunda transformada
de Hough para estimación de posición y orientación en aplicaciones donde la
escena contiene cuadŕıculas. Algunos escenarios posibles son ambientes urbanos,
pistas de aterrizaje para drones, ĺıneas de producción industrial, y gúıas por
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Figura C.1: (a)-(d) y (e)-(h) Par de ejemplos de detección de puntos de concu-
rrencia en un patrón cuadro-radial.

detección de códigos de respuesta rápida (QR, por las siglas en inglés: Quick
Response).
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