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Visién computacional para instrumentacion y na-
vegacion asistida usando métodos opto-digitales

Resumen

Navegacion visual es un problema de investigacién abierto que se puede
abordar usando métodos de visién por computadora. Cada dia, las aplicacio-
nes basadas en visién son mas comunes; por ejemplo, la navegacién auténoma,
localizacion de objetos, seguidor de rutas y construcciones de mapa tridimen-
sional, entre otras. Los sistemas opto-digitales poseen grandes ventajas para el
desarrollo de aplicaciones de visién por computadora. Su configuracién integra
un sistema éptico con un medio de adquisicién de imagenes y procesamiento
digital. En la actualidad, la captura de imagenes se realiza de forma rapida em-
pleando camaras digitales. También, las computadoras digitales permiten que el
procesamiento de las imagenes capturadas pueda realizarse a altas velocidades
y de forma mucho mas flexible. En este trabajo de tesis se propone un método
opto-digital para la estimacién de posicién y orientacion de un robot movil te-
rrestre. Primeramente, se realiza una deteccién de contornos en la escena. Esta
informacion permite realizar una deteccién de lineas de carril, a través de la
transformada de Hough. Posteriormente, se determina la posicién y orientacién
del vehiculo a partir de las lineas detectadas. Se utilizan mascaras digitales para
limitar la informacién no 1til que interfiere a la deteccién de lineas. Asimismo,
se realiza una implementacién paralela de los algoritmos en desarrollados para
reducir el tiempo de respuesta en el procesamiento digital de datos. El método
propuesto es evaluado a través de criterios de desempeno objetivos al procesar
secuencias de video tomadas del mundo real. Los resultados obtenidos mostra-
ron que lo métodos opto-digitales son factibles para aplicaciones de navegacién
visual e instrumentacién 6ptica en vehiculos reales.

Palabras clave: Estimacion de posiciéon y orientacién, deteccion de ca-
rril, navegacién visual, homografia, transformacién geométrica, correccién de
distorsién, transformada Hough, cdmara pinhole, calibracién de camara, vision
computacional.
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Computer vision for instrumentation and assisted
navigation using opto-digital methods

Abstract

Visual navigation is an open research problem that can be addressed using
computer vision methods. Computer vision applications are more commons in
everyday life such as autonomous navigation, object localization, path follower,
map construction, and amongst others. Opto-digital systems offer great advan-
tages for the development of computer vision applications. Typical opto-digital
configurations integrate an optical system with a digital image acquisition and
processing unit. Nowadays, digital cameras can capture images at high speeds.
On the other hand, digital computers allow the processing of the acquired ima-
ges to be performed at high speeds in a much more flexible way. In this work, an
opto-digital method to estimate the position and orientation of a mobile robot
is proposed. First, an edge detection method is used to extract the edges of
the scene. This information is useful to detect lane lines with Hough transform.
A binary window mask limits non-useful information that interferes with line
detection were used. Additionally, a parallel implementation of the developed
algorithms were used to speed up the digital processing time. The efficiency of
the proposed method is evaluated through an objective performance criteria by
processing video sequences taken from the real world. The experimental results
showed that opto-digital methods are feasible for visual navigation and optical
instrumentation applications.

Keywords: Position and orientation estimation, lane detection, visual navi-
gation, homography, geometric transformation, lens distortion correction, Hough
transform, pinhole camera, camera alibration, computer vision.
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Capitulo

Introduccion

1.1. Vision por computadora

En la actualidad, los sistemas de visién por computadora estan impulsando
el desarrollo de nuevas tecnologias para realizar diversos tipos de aplicaciones en

ingenierfa, educacién, medicina, y entretenimiento entre otras [1—4]. El estudio
y disenio de nuevos métodos de vision computacional es un tema de investiga-
ci6én actual y de gran relevancia debido a su impacto en la sociedad [5]. Algunos

ejemplos de aplicacién como la inspeccién de componentes electrénicos, digita-
lizacién tridimensional de objetos, navegacion visual, andlisis de irregularida-
des en tejido, realidad aumentada, reconocimiento, y andlisis biométrico, entre
otros [6-9]. Los sistemas de visién tienen como finalidad obtener informacién
de un entorno tridimensional como lo hace el sistema visual humano [10]. Para
alcanzar este comportamiento resulta muy complejo, los resultados deben ser
mejor en comparacién al sistema de visién humano [11,12].

En la actualidad, los equipos digitales han mejorado considerablemente en
los dltimos anos. Las camaras digitales alcanzan altos niveles de resoluciéon con
sensibilidad a una amplia gama de colores. Los niveles de nitidez en las imagenes
rebasan lo que el ojo humano puede distinguir. Sin embargo, para las compu-
tadoras digitales, las imagenes son simplemente arreglos de pixeles o valores
numeéricos de intensidad que representan colores en cada pixel. Por esta razon,
desde el punto de vista computacional, comprender la informacién contenida en
imégenes es un problema que se ha tratado de resolver desde hace décadas [10].

Los modelos de aprendizaje marcaron el inicio de trabajos sobre vision por
computadora [13, 14]. Los resultados que obtuvieron propicié un interés cre-
ciente por este tema de investigacion y diversos enfoques se han desarrollado y
reportado en la literatura cientifica [15—17]. A pesar de los importantes avances
realizados en el campo de visién computacional, todavia permanece abierto un
numeroso considerable de problemas. Por ejemplo, reducir los tiempos de res-
puesta de los sistemas, mejorar los niveles de exactitud, reducir el consumo de
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Figura 1.1: Posicién y orientacién en sistemas mdéviles para la navegacién asis-
tida?. (a) Un vehiculo aéreo presenta seis grados de libertad para definir su
posicién y orientacién en el espacio tridimensional. (b) Un vehiculo terrestre
presenta tres grados de libertad para definir su posiciéon y orientaciéon en el
plano del piso. (¢) Un vehiculo terrestre restringido a moverse a lo largo de
un carril solo presenta dos grados de libertad: la posicién x perpendicular a la
direccién de desplazamiento y el angulo ¢ alrededor del eje vertical.

energia, reducir el tamano de los equipos, y simplificar los procesos de operacion
para facilidad de uso, entre otros.

1.2. Instrumentacion para navegacién asistida

La instrumentacién se encarga de realizar mediciones fisicas mediante el
uso de sensores, permiten monitorear y retroalimentar el sistema de navega-
cién [18-21]. En general, para robots mdéviles, la navegacién asistida requiere
mediciones de proximidad (distancia), posicién (z,y, z), orientacién (cabeceo,
alabeo, guinada), y velocidad (V,,V},, V.), entre otras [22], tal como se muestra
en la figura 1.1(a). En particular, para un vehiculo terrestre, las variables de
interés se reducen a la posicién (z,y) en el plano de referencia, y la orientacién
definida por la rotacién alrededor del eje z (guinada), como se muestra en la
figura 1.1(b).

En este trabajo de tesis se aborda como problema de estudio, la navegacién
visual de un robot movil terrestre restringido a desplazarse a lo largo de un carril,
como se ilustra en la figura 1.1(c). De esta forma, el problema de estimacién
de posicion y orientacién del vehiculo se reduce a estimar la coordenada z, y la
orientacién dada por el angulo ¢ alrededor del eje vertical.

En la literatura se han propuesto diferentes enfoques para extraer infor-
macién util para la navegaciéon empleando visién por computadora. Por ejem-
plo, se han propuesto métodos de estimacién de distancias de objetos alrede-
dor del vehiculo [23,24], mapas de entrenamiento del sistema [25], planifica-
cién de rutas [25,20], y reconstruccién virtual del espacio tridimensional, entre

2Imégenes tomadas de
http://www.chrobotics.com/library/understanding-euler-angles
https://www.researchgate.net/figure/Vehicle-with-coordinate-system_figl_
311268794
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otras [27-29]. En este trabajo de tesis, se propone un método de navegacién vi-
sual empleando transformaciones proyectivas y la transformada de Hough para
la deteccién de lineas de carril. Los resultados obtenidos en esta tesis muestran
que es posible determinar la posicion y orientacién del vehiculo empleando las
lineas de carril como fuente de informacién.

1.3. Sistemas opto-digitales

La Optica es una rama de la fisica que se encarga del estudio de los fenémenos
en los que interviene la luz [30,31]. Los avances de la 6ptica se vieron motivados
por la necesidad de aprovechar informacién visual. Los primeros avances con-
sistieron en el andlisis y aplicacién de sistemas puramente épticos; por ejemplo,
holograffa, microscopia, e interferencia laser, entre otros. Incluso, la captura
de imégenes se realizaba con cdmaras analégicas, donde las distribuciones de
intensidad eran registradas empleando pelicula fotografica.

Los avances recientes en sensores electrénicos y computadoras digitales han
permitido incrementar la eficiencia de los sistemas 6pticos. En la actualidad,
la captura de imdgenes se realiza de forma rdapida empleando camaras digita-
les. También, las computadoras digitales permiten que el procesamiento de las
imégenes capturadas pueda realizarse en altas velocidades y de forma mucho
mas flexible.

Los sistemas 6pticos tienen configuraciones que incluyen sensores, lentes y
filtros que permiten procesar sefiales analogas usando las propiedades de la
luz [32-34]. Por otro lado, los sistemas digitales convierten las sefiales andlogas a
digital para realizar procesamiento de imagenes a través de secuencias especificas
de instrucciones [35, 36]. La integracién de un sistema 6ptico con un medio de
adquisicion y procesamiento digital dio origen a los sistemas opto-digitales.

En este trabajo de tesis, aprovechamos las ventajas de los sistemas opto-
digitales para el desarrollo de un método de estimacion de posicién y orientacion
de un vehiculo movil terrestre desplazdndose a lo largo de un carril. En la parte
optica, consideramos las propiedades geométricas de la cAmara y el proceso épti-
co de formacién de imagen. Respecto a la parte digital, se proponen algoritmos
viables para ser implementados en plataformas computacionales de alto desem-
penio (GPU por sus siglas en inglés Graphics Processing Unit), explotando la
capacidad del paralelismo masivo. El método propuesto es evaluado procesando
secuencias de video tomadas del mundo real. De los resultados obtenidos, se
observa que el método propuesto puede ser 1til para proporcionar las senales de
posicién y orientacion requeridas por el controlador de un robot mévil.

El contenido del presente documento de tesis se organiza de la siguiente for-
ma. En el capitulo 2 se analizan los principios tedricos utilizados para el desa-
rrollo del método de deteccién de carril y estimacion de posicién y orientaciéon
del vehiculo. En el capitulo 3 se presenta la plataforma experimental construi-
da, los detalles de la implementaciéon del método propuesto, y la calibracién del
sistema. Este capitulo finaliza con la descripcién de los resultados obtenidos en
la deteccion de carril y estimacion de pose empleando secuencias de video del
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mundo real. En el capitulo 4 se presentan las conclusiones de la presente tesis y
trabajo a futuro.

En el trabajo de investigacién desarrollado en esta tesis, se analizaron di-
ferentes enfoques reportado en la literatura cientifica para visién por compu-
tadora. En el apéndice A se presenta la estimacion de pardmetros del sistema
usando minimos cuadrados recursivos con factor de olvido. Los apéndices B, y
C presentan el método de rectificacion de imégenes, y segunda transformada de
Hough, respectivamente. En estos apéndices se describen los aspectos basicos
de la implementacién de estos métodos alternativos asi como las desventajas
restrictivas por las que no fueron usados en este trabajo de tesis.

1.4. Objetivos

El objetivo general y los objetivos especificos de este trabajo de tesis, se
presentan a continuacién:

1.4.1. Objetivo general

Desarrollo de técnicas de visién computacional optimizando métricas objeti-
vas para aplicaciones de instrumentacién éptica y navegacion asistida empleando
métodos opto-digitales.

1.4.2. Objetivos especificos

= Estimar la posicion y orientaciéon de un robot mévil terrestre usando como
referencia las lineas de carril en la pista.

= Implementar el algoritmo propuesto de forma eficiente en una plataforma
computacional de alto rendimiento.

= Cuantificar el desempeno del sistema propuesto utilizando medidas de
desempeno objetivas a través de simulaciones por computadora.

= Verificar el funcionamiento del método propuesto empleando secuencias
de video del mundo real.

1.5. Contribuciones

Los resultados derivados de este trabajo de tesis consisten en la publicacién
de un articulo cientifico, cuatro memorias de congreso, y un software de proce-
samiento de patrones de franjas. Los detalles de estos desarrollos se enlistan a
continuacion.

= Rigoberto Juarez-Salazar, Alejandra Giron, Juan Zheng, and Victor H.
Diaz-Ramirez, “Key concepts for phase-to-coordinate conversion in fringe
projection systems,” Appl. Opt. 58, 4828-4834 (20 June 2019).

DOI: https://doi.org/10.1364/A0.58.004828.
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= Juan Zheng, Alejandra Giron, Rigoberto Juarez-Salazar, and Victor H.
Diaz-Ramirez “Image stitching by projective transformations,” Proc. SPIE
11136, Optics and Photonics for Information Processing XIII, 111360C (6
September 2019).

DOI: https://doi.org/10.1117/12.2528585.

= Alejandra Giron, Juan Zheng, Rigoberto Juarez-Salazar, and Victor H.
Diaz-Ramirez “Length measurements from monocular images,” Proc. SPIE
11136, Optics and Photonics for Information Processing XIII, 111360F (6
September 2019).

DOI: https://doi.org/10.1117/12.2528607.

= Rigoberto Juarez-Salazar, Juan Zheng, Alejandra Giron, and Victor H.
Diaz-Ramirez “Calibration of camera-projector fringe projection systems
for three-dimensional scanning,” Proc. SPIE 11136, Optics and Photonics
for Information Processing XIII, 111360D (6 September 2019).

DOI: https://doi.org/10.1117/12.2530016.

= Juan Zheng, Rigoberto Juarez-Salazar, y Victor H. Diaz-Ramirez, “Pose
estimation from projective transformations for visual guidance of a whee-
led mobile robot,” Proc. SPIE, Optics and Photonics for Information Pro-
cessing XIII (25 August 2020).

= Rigoberto Juarez-Salazar, Alejandra Giron, Juan Zheng, Victor H. Diaz-
Ramirez, “3DFringe: Digitalizaciéon de objetos tridimensionales por pro-
yeccion de franjas,” Participacion en la convocatoria Premio al mejor soft-
ware del Instituto Politécnico Nacional (27 August 2019).
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Capitulo

Marco teodrico

2.1. Modelo de camara

Las camaras fotograficas son dispositivos complejos que involucran la ope-
racion conjunta de un sensor foto-sensible y un sistema de formacién de imagen
(lente compuesta). El sistema de formacién de imagen estd integrado por ele-
mentos Opticos, electrénicos y mecanicos que incluyen lentes, obturadores, filtros
y actuadores disenados para generar imagenes de alta calidad.

En la figura 2.1(a) se representa el proceso de formacién de imagen usando
una lente compuesta. El diseno de algoritmos de procesamiento de datos a partir
del modelo matematico de una lente compuesta puede resultar compleja [37,38].

El proceso de formacién de imagen puede describirse completamente supo-
niendo que el sistema de formacién de imagen consiste en una lente simple como
se muestra en la figura 2.1(b). El modelo matemadtico resultante serd suficiente
para incluir efectos tales como desenfoque y distorsién radial.

Los algoritmos de procesamiento de imagenes pueden simplificarse ain mas
cuando el efecto de desenfoque y la distorsién radial son despreciables. En este
caso, se puede considerar el modelo de una camara pinhole como se muestra en
la figura 2.1(c) [15].

El proceso de formacion de imagen usando el modelo de cdmara pinhole
es bastante simple. Este modelo integra la informacién sobre los parametros
extrinsecos (posicién y orientacién) de la cdmara y los pardmetros intrinse-
cos tales como la longitud focal, el centro 6ptico, oblicuidad y tamano de los
pixeles [39]. Usando el modelo de cdmara pinhole, un punto p en el espacio tri-
dimensional observado por la camara, se detecta como un punto g en el plano
imagen como

p=HCHIp]], (2.1)

donde C = K[RT, — RT't] es una matriz de tamaiio 4 x 3 que contiene los pardme-
tros de la cdmara, K es la matriz de pardmetros intrinsecos, la matriz R y el

7
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Figura 2.1: Diferentes configuraciones para el proceso de formacion de imagenes.
(a) Lente convencional. (b) Lente simple. (¢) Camara pinhole.

vector ¢ definen la orientacién y posicién de la cdmara, respectivamente, [-]7

indica transposicién, y H[-] es el operador de coordenadas homogéneas.

El operador de coordenadas homogéneas permite realizar operaciones geométri-
cas cambiando del espacio cartesiano al espacio homogéneo. De esta forma, las
transformaciones de proyeccién geométricas, que son no-lineales en el espacio
cartesiano, se realizan de forma simple a través de operaciones lineales. Para
realizar proyecciones geométricas, el operador H agrega una dimensién adicio-
nal al vector dado; por ejemplo, un punto p = [x,y, 2], sus correspondientes
coordenadas homogéneas son

Hip| = m =q (2.2)
Para regresar al espacio cartesiano original, el operador H~! reduce una dimen-

sion al vector q y es dividido por el ultimo elemento; especificamente,

H g = -p, (23)

donde s es el dltimo elemento de q.

2.1.1. Homografias

Existe un caso particular de puntos que pertenecen a un plano que se en-
cuentra en el espacio tridimensional [40]. Los puntos p del plano son observados
y registrados en el plano imagen como puntos g, como se observa en la figu-
ra 2.1.1. Dado este caso, los puntos p (del espacio tridimensional) se pueden
parametrizar usando los puntos p (del plano bidimensional) como

p=1q, q» s/H[p], (2.4)

donde g; y g, son vectores ortogonales que definen la orientacién del plano
observado, y s representa la traslacion del plano observado. Utilizando este
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Figura 2.2: Proceso de formacién de imdgenes. (a) Caso general en donde se
observan puntos p en el espacio tridimensional. (b) Caso particular en donde
los puntos p son coplanares a los puntos p.

caso, en la Ec. (2.1) se reduce la matriz C' de la cdmara pinhole a una matriz G

de tamafno 3 x 3 como
p=H"[GH][p]], (2.5)

donde G es una matriz conocida como homografia y esta dada por
G=KR"q,, q, s—t. (2.6)

Esta matriz puede construirse usando solamente los parametros de posiciéon y
orientacién de la cdmara [11]. La homografia se puede describir como una trans-
formacién geométrica que relaciona los puntos del plano imagen y los puntos
del plano de referencia. Esta matriz es de gran importancia en aplicaciones ta-
les como calibracion de camaras, correccion de perspectiva, y construccion de
imégenes panoramicas, entre otras [15,40,412]. A continuacidn, se mostrarén tres
métodos de estimacién de homografias, basados en puntos de correspondencia,
lineas en la imagen, y esquinas de cuadrilateros.

2.1.2. Estimacion de homografias usando puntos de co-
rrespondencia

Una homografia se representa por una matriz de tamano 3 x 3 dada por

g11 g12 913 a1
G = |gn 922 gs| = gL ], (2.7)
931 932 933 a3

donde g7, g% y g% son los renglones de la matriz G. Usando la Ec. (2.5) y por
definicién de H~! se obtiene

_ 1 Tgi{#H[p]
W= GTHIp) Sl (28)
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Despejando el denominador de la Ec. (2.8) se forma el siguiente sistema de
ecuaciones lineales:

g H[plu. = g¥ Hlp), (2.9)
g5 MHlpluy = g5 Hlpl.

Este sistema de ecuaciones lineales se puede escribir en forma matricial como

Hlp]™ 0 —uHp™] |9 [0
5 o] g o) 210
A SN——

La matriz homografia tiene nueve elementos a determinar; sin embargo, solo
existen ocho incdgnitas porque las homografias son unicas excepto escala. Por
otro lado, considerando la Ec. (2.10) se concluye que por cada correspondencia
de puntos (u, p) se obtienen dos ecuaciones. Por lo tanto, se necesitan al menos
cuatro puntos de correspondencia para estimar una matriz homografia. Con n
puntos de correspondencia, se obtiene la siguiente ecuacién matricial:

[Ay] 02

Ay 02

A3 02

Al 9= |0, (2.11)
_An_ _02_
—_— ==

A 02y,

donde Ay representa las dos ecuaciones correspondientes a la Ec. 2.10 para un
punto de correspondencia, y 02 es un vector de ceros de tamano 2 x 1. Se usa
descomposicion en valores singulares para encontrar el vector g que minimiza
|lAg||. Teniendo G, se puede corregir la distorsién generada por la perspectiva
respecto al objeto de interés utilizando la Ec. (2.5) como

p = MG M) (2.12)

Una desventaja de este proceso de estimacién de homografias es la necesidad
de proporcionar tantos puntos p del plano imagen como puntos p del plano
de referencia. Por ejemplo, para escanear documentos, los usuarios no cuentan
con informacién del plano de referencia (puntos p). Por consecuencia, no hay
informacion a priori para conocer la relaciéon del aspecto del documento. Para
este tipo de aplicaciones se propone un método de estimacion de homografias
donde las coordenadas p del plano de referencia no son requeridas.

2.1.3. Estimacion de homografias usando lineas
Una linea recta se puede expresa matematicamente como

Yy =mz + b, (2.13)
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donde m es la pendiente de la recta, y b es la interseccién con el eje vertical.
Observe que la ecuacién de la recta se puede reescribir como mx —y + b = 0.
En general, para tres constantes cualquiera a, b, y ¢ (excepto a = b =c=0), la
recta puede escribirse como

ax + by + ¢ = 0. (2.14)

Esta ecuacién toma una forma simple cuando se usan coordenadas homogéneas.
Especificamente, las lineas rectas pueden ser representadas por un vector como

a
£=1|b]. (2.15)
c
De esta forma, de la Ec. (2.14), se observa que los puntos p = [z,y]7 que
pertenecen a la recta parametrizada por el vector £ satisfacen
" H[u] = 0. (2.16)
Si tenemos n lineas, £1,€s,--- ,£,, que intersectan en el punto w, entonces se
puede construir el siguiente sistema de ecuaciones
e 0
I 0
: Hlp) = e (2.17)
er 0

El punto de interseccién p de las lineas se encuentra resolviendo la Ec.
(2.17) usando el método de descomposicién en valores singulares. Este enfoque
se puede aplicar para encontrar los puntos u,, necesarios para realizar correcciéon
de perspectiva usando el método descrito en la subseccién anterior.

2.1.4. Estimacion de homografias usando cuadrilateros

La matriz homografia se puede representar como

G=|ga 922 93| =1[91 92 93], (2.18)

donde g1, g2 ¥ g3 son las columnas de la matriz G. Observamos que las columnas
de G corresponden a las coordenadas homogéneas de las imagenes de puntos ey,
es, v ez dados por

g, = GHle1],

g, = GHlez], (2.19)
gs = GH[63

)
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Hb

Ha

Figura 2.3: Los puntos p,, ty, v K. se determinan por las intersecciones de las
lineas generadas a partir de cuatro puntos u;, en el plano imagen.

donde ey y e son los puntos al infinito en el plano de referencia en direccién gy
Vv g2, respectivamente, y eg es el origen del plano de referencia. Las coordenadas
homogéneas de los puntos ey, es y e3 estan dadas por

1 0 0
’H[el] =10 y H[ez] =1 y H[63] = (0] . (220)
0 0 1
Usando los nuevos puntos junto con la Ec. (2.5), se obtiene el siguiente
conjunto de ecuaciones:

py, = HHGHes]), (2.21)

Aplicando H~! a cada ecuacién y sustituyendo las columnas de la ecuacién
(2.18), se obtiene

G=[mHp] M, Hlpl, (2.22)

donde ;1 y ¥2 son factores de escala desconocidos. Los puntos p,, t, ¥ K. Se
conocen por los puntos p;, dados por el usuario, como se observa en la figura 2.3.
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Utilizando los puntos conocidos p,, se obtiene el siguiente conjunto de lineas:

£y = Hlpq] x Hpo),
& = Hlps] x Hpy],
€3 = Hpq] X Hlpyl,
4 = Hlpig) % Hlps), (229)
€5 = H[py] X Hpy,
Lo = Hp] x Hlps),

donde £; y £5 son lineas paralelas hacia el eje x. Las lineas €3 y £4 son para-
lelas hacia el eje y. La interseccién de las lineas €5 y £g indica el origen. Las
intersecciones de las lineas nos permiten calcular los puntos u,, p, vy p, como

Hip,) =1 x €2 =[a1 az a3]”,
Hipy) = €3 x La=[br by b3]", (2.24)

H[[LC] = £5 X £6 = [Cl Co Cg]T.

Asumiendo que la cdmara estd alineada al plano de referencia en el origen
(R=1, t=03), la Ec. (2.6) se reescribe como

MNa, g2 s =K ' [mH[w,) vwHm) Hlwl] . (2.25)

De esta manera se puede aprovechar la ortonormalidad de los vectores q; y g5.
Asumiendo que g7 q; = q3'q, y g¥ g, = 0, se obtiene

ViH o) WHIp,) = ¥ H ) WH ), (2.26)
Hp, )" WH[pm,) =0, (2.27)

donde
W=KTK" (2.28)

La matriz K se compone por los seis pardametros intrinsecos de la camara,
dados por el tamano del pixel (ancho s, y altura s, ), las coordenadas del punto
principal (7., 1), la distancia focal f y la oblicuidad del pixel o. Para simplificar
la estimacién de estos pardmetros, se usan las siguientes suposiciones [10]. En
la actualidad, la calidad de las caAmaras modernas es alta. Entonces, podemos
asumir con seguridad que el sensor de la cdmara tiene una oblicuidad de cero.
De esta manera, W se simplifica como

si 0 — STy
W=| 0 52 —8yT, : (2.29)

Yy
2 2 2
—SuTe  —SyTy Ty + 7, + f

Ademais, el sensor de la camara y sus lentes estan alineados tal que el punto
principal estd muy cercano al centro de la imagen. Por lo tanto, se asume que
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las coordenadas del punto principal son 7, = 7, = 0. De esta forma, la matriz
W se vuelve diagonal, especificamente,

W = diag(s3, 55, f). (2.30)

Mas atin, asumiendo que la relacién de aspecto de los pixeles es conocida, la
matriz W se puede reescribir como

W = diag(r?, 1, w), (2.31)

donde r = s,/s, es la relacién de aspecto del pixel (r = 1 si los pixeles son
cuadrados), y w = f?/ 5121 es una constante desconocida. Usando la matriz W,
la Ec. (2.27) se puede reescribir como

arbyr® + agby + azbsw = 0, (2.32)

obteniendo como resultado

_r2a1b1 +a2b2 (2 33)

w =

Cl3b3

Con base en lo anterior, la matriz W se calcula usando la Ec. (2.26) para obtener
la relacién del aspecto, dado por

M)W H ]
€= 5 =\ Al T H I, (234

En consecuencia, para cada punto p en la Ec. (2.12), su correspondencia del
punto p es

Pha| 1 (1/31) (Hpy) x H[p]))”
{pk,y} C (Hlpg] % Hp))T H gy [_(1/72)(7'[[#@] X H[uc])T} Hpgl- (2:35)

Por lo tanto, si se normaliza el ancho de la imagen (pi, ), los factores esca-
lares puede ser calculados como

oy = (P] X M) Hp]
(H o] x Hlp )T H[pr)

vy ore=m/é (2.36)
De forma similar, si la altura de la imagen esta normalizada (py,y ), entonces

T Hlpg) x i) THpy,” 7

= &2 (2.37)

El algoritmo propuesto requiere solo cuatro puntos g que indican las es-
quinas de un rectdngulo observado. Los puntos p dados como entrada se usan
para determinar las lineas de los contornos del rectdangulo observado. Las lineas
resultantes se usan para determinar tres puntos: p, (la imagen del punto al
infinito en direccién ), p, (la imagen del punto al infinito en direccién y) y p,.
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Figura 2.4: Captura de cuatro puntos por cada rectangulo observado en la ima-
gen.

(la imagen del punto en el origen). Este algoritmo se puede aplicar al caso en
donde existan n lineas paralelas a cada eje del plano observado. En la siguiente
subseccién se analiza el proceso de obtener los puntos de interseccién de las
lineas paralelas.

Como se ha mencionado previamente, las homografias son muy utiles para
aplicaciones de procesamiento de imagenes. A continuacién, se describird la
aplicacién de las matrices homografia para realizar correcciéon de perspectiva,
generacién de imdgenes panoramicas, y construcciéon de imagenes compuestas.

2.1.5. Correccién de perspectiva

En esta aplicacion, se reciben como entrada cuatro puntos p en la imagen, y
se entrega como salida una imagen sin distorsién de perspectiva. En la figura 2.4
se muestra las capturas de puntos p para cada objeto de interés. El conjunto de
puntos p perteneciente al objeto de interés, se calcula una homografia para re-
proyectar la imagen al plano de referencia. En la figura 2.5), se puede observar
los resultados de re-proyeccion de cada objeto de interés.

Los resultados obtenidos validaron experimentalmente la relacion entre plano
imagen y plano de referencia. La geometria que establece esta relacion esta dada
por la homografia y se puede calcular de manera eficiente con los métodos de
estimaciones descritas en las subsecciones anteriores.

2.1.6. Generacién de imagenes panoramicas

En esta aplicacion, se reciben como entrada multiples imagenes y se entrega
como resultado una imagen panoramica. Se calcula una homografia por cada
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(b)

Figura 2.5: Objetos seleccionados con perspectiva corregida. (a) Monitor de
computadora. (b) Documento impreso en hoja de papel. (c) Pantalla de tableta
electrénica.

imagen usando rectangulos de la escena, por ejemplo, los monitores de compu-
tadora en el caso de las figuras 2.6(a)-(c). Las homografias calculadas son usadas
para re-proyectar las imagenes proporcionadas a un dnico plano de referencia.
El resultado es una imagen panordmica como se muestras en la figura 2.6(d).

Con esta aplicacién, se demuestra experimentalmente el plano de referencia
puede ser Unico y corresponder a multiples homografias. Dado a esta particula-
ridad, la informacién de interés puede ser compartida en el plano de referencia
para una secuencia de video.

2.1.7. Construccion de imagenes compuestas

En esta aplicacion, se reciben como entrada miltiples imagenes y se entrega
como resultado una vista tridimensional de la escena. En la aplicacion se cal-
culan las homografias de cada imagen, ver figura 2.7. Las homografias de las
imégenes correspondientes a un mismo plano (piso, paredes, techo) son usadas
para generar imagenes panoramicas. Nuevamente, se determina una homografia
por cada imagen panoramica generada, ver figura 2.8. Finalmente, las homo-
grafias son usadas para re-proyectar las imdgenes panoramicas en las paredes
de una escena tridimensional virtual como se muestra en la figura 2.9.

Los resultados obtenidos muestran la flexibilidad y la facilidad en manejo de
planos. La geometria del sistema permitié realizar la re-proyeccién de multiples
planos hasta formar una escena tridimensional.

2.2. Calibracion de camaras usando homografias

Para describir el proceso de formacion de imagen de una cdmara, es necesa-
rio conocer sus parametros intrinsecos y extrinsecos. Los pardmetros intrinsecos
representan caracteristicas internas de la cdmara, como la distancia focal, dis-
torsion, oblicuidad y el punto central de la imagen. Los parametros extrinsecos
proporcionan la posicién y orientacién de la camara. El proceso de la estimacion
de los pardametros es mejor conocido como calibracion.
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Figura 2.6: Composicién de imégenes panoramicas. (a)-(c) Imdgenes de entrada.
(d) Imagen panordmica resultante.

La calibracién es una tarea esencial para aplicaciones de procesamiento de
imégenes. La disponibilidad de estos parametros permite realizar triangulacién
entre dispositivos, calcular la homografia, y determinar la pose de los objetos,
entre otras [10,43]. En esta seccién se presenta un método para estimar los
pardmetros intrinsecos y extrinsecos usando miltiples homografias.

2.2.1. Parametros intrinsecos

Para estimar los parametros intrinsecos, se toman las siguientes considera-
ciones. El plano de referencias coincide con el plano xy del sistema de referencia
global, es decir, no existe rotacion ni traslacién en el plano de referencia. En este
caso, la orientacién del planoes g; =[1 0 07y g, =[0 1 0]T. Usando las
consideraciones anteriores, la Ec. (2.18) se reduce a

G=KI[F 7, - RTH], (2.38)

donde 71 y 72 son los dos primeros renglones de la matriz de rotaciéon R de la
camara. Por otro lado, la representacién explicita de la matriz G es mostrada
en la Ec. (2.18). Entonces, la Ec. (2.38) se reescribe como

[F 72 —R'=K'g, g, gsl. (2.39)
Los vectores 71 y 72 son ortogonales. Por lo tanto, se puede aprovechar que
7Py =0y |[71|*> = ||72||?, obteniendo

Q{Wgz =0, Q{ng = ggWgz, (2.40)
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©

Figura 2.7: Imédgenes capturadas de una escena en diferentes puntos de obser-
vacién. (a)-(d) Conjunto de imagenes correspondiente a una pared con objetos.
(e)-(g), (h)-(j), y (k)-(n) Conjuntos de imdgenes de paredes, piso y techo de la
escena observado.

donde la matriz asimétrica W es definida como

w11 w12 W13
W = K_TK_l = |W12 W22 W23]| . (241)
w13 W23 W33

La forma bilineal g7 Wg? puede expresarse como

9; Wgj = V;[Glw, (2.42)
donde
T
g1i91j
g2i92;
g3i93;
ViG] = J , 2.43
iG] 92i915 + 91925 ( )
93i915 + 91i93;
93925 + 92i93;
y

w:[wll W22 W33 W12 W13 wgg]T. (244)

Por lo tanto, las igualdades escritas en la Ec. (2.40) se pueden expresar como

V[Glw = 0, (2.45)
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() (d)

Figura 2.8: Imégenes compuestas generadas por los conjuntos de imagenes cap-
turadas.

donde V]G] es una matriz de tamafio 2 x 6 generada como

_ V12[G]
V[G] = [Vu[G] i VQQ[G]:| . (2.46)
La solucién para encontrar w en la Ec. (2.45) es usar varias homografias
G, k=1,2,3,...,m. Para esto, las homografias se estiman en diferentes image-
nes donde se varia la posicién y la orientacion del plano de referencia, mientras
los pardametros intrinsecos se mantienen constantes. Entonces, esta solucién for-

ma una nueva matriz
Vw = 09y, (2.47)

donde
V=[V[G)" VG ..VIGL]T)E. (2.48)

La solucién para encontrar el vector w de la Ec. (2.47) se puede obtener
usando el método de descomposicién de valores singulares. El vector resultante
debe ser normalizado debido a que la matriz W es tinica excepto escala. Es decir,
el vector estimado, llamémosle w, se relaciona con el producto de la matriz W
por una constante . Esta relacién se expresa matemadaticamente como

W=\W=\K"TK™L (2.49)

Utilizando la matriz W, las entradas k;; de la matriz de pardmetros intrinse-
cos
kin k2 ks
K=|0 koo kosl, (2.50)
0 0 1



20 CAPITULO 2. MARCO TEORICO

Figura 2.9: (a) Escena tridimensional creada con imagenes compuestas. (b)-(g)
Escena en diferentes angulos.

son dadas como
A = (det W)/d,
ki = /M,
bz = /A nd, (2.51)
kia = —t12y/A/W11d,

k13 = (W12Wa3 — WaoWi3)/d,

ki = (W12W13 — W11W23)/d.

2.2.2. Parametros extrinsecos

El dltimo paso de la calibracién, es encontrar los parametros extrinsecos
usando los pardametros intrinsecos disponibles. La matriz de rotaciéon R y el
vector de rotacién t se pueden estimar usando una homografia. Primero, se
estima RT de la matriz RT como

RT = [hl h2 h1 X hg] s (252)
donde a través de la Ec. (2.39), los vectores hy y hy son dados por
hi =K 'g,, hy=Klg,. (2.53)

Después, la matriz de rotacién R es obtenida desde R con la condicién de orto-
gonalidad que mantienen las matrices de rotacion. Para esto, la descomposicion
de valores singulares R = USV7T es obtenida y la matriz de rotacién requerida
es determinada como

R=UVT. (2.54)

Finalmente, el vector de translacion t es calculado como

t=—-RK 'g,. (2.55)
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2.3. Distorsion radial

La distorsién radial es una fuente de ruido en imagenes que introducen las
lentes de la mayoria de las camaras. Esta degradacion es mas susceptible en las
camaras de bajo costo. Las distorsién radial afecta los resultados de algoritmos
de analisis y extraccién de informacién métrica. Por esta razdn, la distorsion
radial suele afectar severamente el desempeno en los algoritmos que se van a
utilizar para la navegacion visual. A continuacién, analizaremos un método de
estimacién para obtener los parametros de distorsion y a su vez corregir imagenes
distorsionadas [44].

2.3.1. Modelo polinomial

La distorsién radial se puede modelar de acuerdo a la relacién entre un punto
con distorsién (§) y un punto sin distorsién (3), como se muestra en la figura
2.10. Esta relacién se expresa mateméaticamente como

d=d(r)[B—c]l+ec (2.56)

donde
r=|8-cll, (2.57)
con ||| indicando la norma Euclidiana, ¢ = [c,c,]T es el punto principal de

la cdmara y d(r) es una funcién escalar modulando el nivel de la distorsién.
La funcién d(r) se puede deducir a partir de argumentos fisicos aplicando los
principios de propagacién de la luz [45]. Sin embargo, la funcién d(r) se puede
aproximar a través de una serie de Taylor truncada como

d(’l“) =doy +dir + d27”2, (258)

donde dy, di y do son coeficientes constantes. La serie de Taylor es reducida
hasta el segundo orden dado que la aproximacién es confiable para la funciéon
d(r).

En las ecuaciones (2.56) y (2.58) se puede observar que la distorsién radial
introducida por la lente esté caracterizada por los coeficientes dy de la funcién
d(r) y las coordenadas (c,,c,) del punto principal c. Estos pardmetros pueden
ser estimados por el algoritmo de Gauss-Newton como se describe a continua-
cién.

Sea d el vector que contiene todos los coeficientes que caracterizan la distor-
sion radial; es decir,

d=1[dy di dy ¢ ¢,)". (2.59)
Para el vector de parametros d, la matriz Jacobiana del modelo es
0 o [06,/068
J(d) = %5 = {851,/35] . (2.60)

De esta forma, los parametros del vector se pueden estimar iterativamente por

dis1 = di + [J7(dr) J(di)] 71T (di)[8 — ()], (2.61)
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AN -l

Figura 2.10: La distorsién radial de acuerdo a la transformacién de un punto
sin distorsién B a un punto distorsionado 4.

donde d(dy) es el punto con distorsién calculada usando di. Los pardmetros
iniciales pueden ser dy = [1,0,0,0,0]7, es decir, sin distorsién y el punto prin-
cipal ubicado en el centro de la imagen (origen del sistema de referencia). Hay
dos criterios de paro, el primero es el nimero de iteraciones maximas supera-
das para encontrar la solucién. Y el segundo es la convergencia relativa descrita
como ||dg+1 — di|| < €, donde € es un valor numérico dado por el usuario.

Usando los parametros de distorsion estimados, las imégenes distorsionadas
se pueden corregir utilizando la Ec. (2.56). Esto mejora significativamente los
resultados para los algoritmos de deteccién, reduce los falsos positivos en los
métodos utilizados y en general, la estabilidad al sistema.

Finalmente, utilizando los parametros de distorsién estimados se puede co-
rregir la distorsién radial en las imdgenes capturadas usando la Ec. (2.56). En
el capitulo 3 analizard de forma experimental la mejora en los resultados al
procesar imagenes sin distorsion.

2.3.2. Correccién de distorsion radial

Para ilustrar la aplicacién de las matrices homografia, asi como el funcio-
namiento del modelo de distorsién propuesto, se presenta a continuacién un
ejemplo de correccién de perspectiva y distorsién de una imagen.

Primeramente, se mostrard una simulaciéon que se realizé para validar el
método de la estimacién de distorsién radial. Usando la Ec. (2.58) y una dis-
torsién predefinida d = [1,5,0,5,0,6,0,5,0,5], se genera una rejilla distorsionada
dada por

I = 3(2 + cos(1070,) + COS(10775y)). (2.62)

Enseguida, la rejilla es usada como entrada para estimar la distorsién radial;
como pardmetro inicial se utilizé d = [1,0,0,0,0]. En la figura 2.11, se pue-
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Figura 2.11: Simulacién de distorsién de lentes. (a) Imagen de una rejilla con
distorsién radial. (b) Imagen de la regilla en (a) con distorsién radial corregida.

de observar la rejilla distorsionada y la correccién de la distorsién usando los
parametros estimadas.

En la figura 2.12(a) se puede observar una imagen distorsionada. Los pardme-
tros de distorsién encontradas fueron d = [1,0,1,0,6,0,0] en la sexta iteracién
con un error de ¢ = 7,26e — 7. Con los parametros encontrados y usando la
Ec. (2.56), se calculan las escalas de la distorsién y se utilizan para corregir la
perspectiva y distorsién de la imagen, como se muestra en la figura 2.12(b). En
la figura 2.12(c), se centra una regién de interés en la imagen corregida.

2.4. Deteccion de contornos

La deteccién de contornos es una tarea esencial en el procesamiento de imége-
nes. Especificamente, se utilizan en sistemas de deteccién y extraccion de ca-
racteristicas. Esto permite detectar la discontinuidad o el cambio de brillo en
los puntos de la imagen. El método tradicional utilizado para la deteccién de
contornos es el método del gradiente que se describe a continuacién.

2.4.1. Meétodo del gradiente

Los contornos en una imagen pueden interpretarse como cambios bruscos
de intensidad. En términos matemadticos, se puede asociar los contornos de la
imagen con discontinuidades en las derivadas de la intensidad. Este es el prin-
cipio general del funcionamiento del método del gradiente para deteccién de
contornos.

La derivada de la intensidad I(z,y) a lo largo de la direccién x estd dada
por 9I(x,y)/0x. Para detectar discontinuidades, consideramos las derivadas de
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=1}

Figura 2.12: Correccién de perspectiva y distorsién de una imagen. (a) Imagen
con perspectiva y distorsién radial. (b) Imagen corregida, y (c) la regién de
interés.

la intensidad en los ejes x e y a través del operador gradiente como

o 5y (2.63)

donde V representa el operador gradiente, ¢, j representan vectores unitarios
en la direccién = e y, respectivamente, y

8I(x,y) ; I($+A$,y)—l($,y)
——2 = lim ,

ox Az—0 Az (2.64)
—— =1 .

Jy Ay—0 Ay

De esta forma, la ubicacion de contornos en la imagen correspondera a aquellos
puntos (z,y) donde la magnitud del gradiente

or? oI’
VI| =] — — 2.65
tome valores altos; es decir
VI > u, (2.66)

donde | - | representa la magnitud del argumento vectorial dado y u es un valor
de umbral dado.

El método del gradiente es simple y facil de implementar computacional-
mente. Sin embargo, debido al uso de derivadas, el ruido de las imagenes suele
amplificarse considerablemente. En consecuencia, el resultado de la deteccion
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contiene contornos en puntos continuos, o de lo contrario, los puntos disconti-
nuos son ignorados. Para limitar los efectos del ruido, se puede hacer un filtrado
inicial que suprimen el ruido, y luego detectar los contornos. Existen en la litera-
tura otras propuestas para deteccién de contornos en donde se incluye un filtro
de ruido [46—48]. Estos métodos mejoran considerablemente el desempefio de la
deteccion de contornos. Entre los métodos propuestos, uno de los mas exitosos
es el método de deteccién de contornos de Canny [19].

2.4.2. Método de Canny

El método de Canny toma en consideracién tres criterios para mejorar el
desempeno de la deteccién de contornos. El primer criterio es la buena detec-
cién. Este criterio maximiza la relacién senal/ruido para incrementar o reducir
la probabilidad en detectar puntos continuos como discontinuidad. El segundo
criterio es la buena localizacion. Un operador decide cudles puntos se consideran
contornos de acuerdo al contorno central. Por ultimo, el criterio de seleccién de
contornos. Se descartan las senales falsas cuando se registran multiples respues-
tas de la deteccién.

De acuerdo a los criterios mencionados, se suaviza la imagen para reducir el
ruido mejorando la deteccion de contornos. La suavizacién se realiza a través de
la convolucién entre la primera derivada de una senal bidimensional Gaussiana
Gn(z,y) en direccién n y la imagen I(z,y), es decir

donde “x” es el operador de convolucién,

Gn(z,y) =n-VG(z,y), (2.68)

“w”

n es el vector de direccién, representa el operador de producto punto,

x2+y2>

5 (2.69)

G(o,y) = exp (—

y o2 es la desviacién estdandar de la sefial Gaussiana. La direccién m no es
conocida y por lo general, debe ser orientada a la misma direccion que los
contornos para ser detectados. Sin embargo, se puede realizar una aproximacion
usando la direccién del gradiente suavizado

V(G(x,y) * I(z,y))
IV(G(x,y) * I(z,y))|

La direccién 7v calculada resulta una buena aproximacién debido a la suavidad
aplicada a la direccién del gradiente del contorno. Por otro lado, un punto se
considera discontinuo cuando el operador G,,(z,y) aplicado en la imagen I(z,y)
es el maximo local, es decir,

A= (2.70)

Gr(x,y) * I(z,y) ~ 0. (2.71)
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Asociando la convolucién Gaussiana con la Ec. (2.68), se puede reescribir la Ec.

(2.71) como
2

%G(x,y) x I(x,y) =0. (2.72)

De la misma forma, se utiliza la magnitud para determinar la intensidad de
los contornos detectados

G, y) * I(z,y)| = [V(G(z,y) * I(z,y))] (2.73)

Usando la propiedad asociativa de la convolucién, en la Ec. (2.72) se puede
aplicar, primero, la convolucién entre la senal Gaussiana G(z,y) y la imagen
I(x,y). Después, se calcula la segunda derivada parcial respecto a n para detec-
tar los contornos. Esto es equivalente a detectar y localizar los contornos usando
el operador Gy, (z,y) pero sin necesidad de conocer la direccién n.

La segunda derivada parcial de la Ec. (2.72) se resuelve usando un filtro

Gaussiano n-dimensional [50]. Este filtro se puede construir de manera eficiente
considerando miiltiples filtros Gaussiano unidimensional como
GnD(B) = GlD(Hl) * G1D<92) * GlD(eg) koo ok GlD(Hn), (274)

donde G, p(x) es el filtro Gaussiano n-dimensional y G1p(zx) es el k-ésimo
filtro Gaussiano de una dimensién. Un filtro G1p(z) esta compuesto por opera-
dores de direccion para ajustar el contorno de un punto observado. El operador
de direccién O(#) se determina por un filtro Gaussiano normalizado de una
dimension en direccién de 0; especificamente,

f: exp (—Wﬂ , (2.75)

k=—N

B cos
TN +1

0(9)

donde N es el nimero de muestras, y d es la distancia del punto local con el
punto observado. El tamano de un filtro Gaussiano unidimensional es 2N +
1 operadores de direccién. Para casos especificos, el dngulo 6 es dado por el
usuario. En casos generales, el dngulo 6 se puede determinar con incrementos
de 180/n. Por ejemplo, si quiero cuatro filtros Gaussiano unidimensionales, los
dngulos serfan 8 = [0,45,90, 135]. Por la disponibilidad de los operadores, se
pueden calcular los puntos discontinuos sustituyendo la segunda derivada parcial
de la Ec. (2.72) por una convolucién con el filtro de la Ec. (2.74).

Los contornos son una fuente de informacién para el algoritmo de deteccion
de lineas. Sin embargo, en la escena observada por la cdmara tendra mucha
mas informacion de objetos que no son de interés; por ejemplo, arboles, edifi-
cios, senales de transito, vehiculos, postes de cables eléctricos, etc. Toda esta
informacion puede hacer mas dificil la deteccién de las lineas de carril. Por esta
razén, se propone el uso de un filtro de ventana que elimina los contornos que
estan fuera del area donde se espera observar el carril. Este filtro eliminara los
contornos que no contribuiran a la deteccién de las lineas de carril. Ademas, de
esta forma se incrementa el desempenio de la transformada de Hough debido a
que se reduce el numero de pixeles a procesar.

seran detectados los contornos de deferentes objetos que no son de interés,
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(a)

w

—€ r=0 r=1 e+1

Figura 2.13: Representaciones de las lineas de carril en (a) el piso o plano de
referencia, y (b) el plano imagen.

2.4.3. Filtro de ventana

La idea general para construir un el filtro de ventana consiste en definir un
area en donde se espera que se encuentre el carril de interés. Para ello, usamos
como referencia la ubicacion relativa de la cdmara y la pista detectada en image-
nes previas. Ademads, partimos del hecho de que la configuraciéon camara-piso
es constante y definida por una matriz homografia. Esta homografia se puede
obtener previamente a través del método de estimacién usando cuadrildteros
(ver la subseccién 2.1.4).

Supondremos que sobre el piso, las lineas de carril son las lineas x = 0 y
x =1 como se muestra en la figura 2.13(a). La representacién de estas lineas de
carril en coordenadas homogéneas es

Ly = ,  (Linea de carril izquierda),
- (2.76)

b = ,  (Linea de carril derecha).

En la imagen capturada por la cdmara, las lineas de carril €y y £; serdn
observadas como las lineas myg y m4 como se muestra en la figura 2.13(b). Si G
es la matriz homografia que define la geometria entre el piso y el plano imagen,
entonces podemos calcular mg y m; a partir de £y y £; como

my =G T, k=01 (2.77)

Las lineas observadas myg y m; definen un area que es dificil de describir ma-
tematicamente para definir la regién de interés en la imagen. Por esta razén, en
lugar de considerar el plano imagen, el filtro de ventana es construido basandose
en el plano de referencia donde las lineas de carril £, y £; siempre son fijas y
verticales.
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Figura 2.14: Representacién de una linea parametrizada: (a) y = mxz +by (b)
p = xcos® + ysin .

Usando la matriz homografia G, transformamos las coordenadas p de puntos
del plano imagen a sus correspondientes puntos p del plano de referencia como

e _ o caa
o) = P2(8] =316 ). (2.78)

De esta manera, con el filtro de ventana W determinamos si el punto p estd
dentro o fuera de la regién de interés de acuerdo a

(2.79)

0, si >1 , < —€,

Wi = {0 e > 1t e 0 pal) <~
1, caso contrario,

donde € es un valor positivo dado por el usuario, con la finalidad de que la

ventana W (p) contenga las lineas de carril de interés, como se observa en la

region sombreada mostrada en la figura 2.13.

2.5. Deteccion de lineas

La deteccién de lineas es un método de gran importancia para uso de apli-
caciones, tales como, la navegacién auténoma, calibraciéon de camaras, recu-
peracion de objetos tridimensionales, compresién de datos, y rectificacién de
imégenes, entre otras [51-55]. Las lineas poseen propiedades geométricas para
determinar los pardmetros de posicién y orientacién [56]. Con base en lo anterior,
se utiliza este fuente de informacién para la navegacion visual.

La transformada de Hough se usa tipicamente para deteccion de lineas, circu-
los, cénicas, y, en general, curvas cuya representacién paramétrica esté dispo-
nible [57]. Dado que pueden existir miltiples parametrizaciones de un objeto,
la implementacion de la transformada de Hough para detectar algiin objeto en
especifico no es dnica [58]. Para la deteccién lineas, podriamos elegir la parame-
trizacién (m, b),

y=mx+b, (2.80)



2.5. DETECCION DE LINEAS 29

calories fat (g) maonaunsat (g) potassium (g) saturated (g) sugars (g) water (g}
calcium (g) carbohydrate (g) fiber (g} polyunsat (g} protein (g) sodium (g} witamine g)

Figura 2.15: Representacion de nutrientes en la dieta de un paciente graficados
usando coordenadas paralelas?.

o la parametrizacién (¢, p),
p = xcos¢+ ysino. (2.81)

En la figura 2.14 se muestra graficamente cada una de las representaciones
descritas. Es importante ver que las ecuaciones (2.80) y (2.81) conducirdn a
implementaciones de la transformada de Hough muy diferentes. Lo més eviden-
te es que la parametrizacién dada por la ecuacién (2.80) no puede representar
lineas verticales. Por otro lado, la implementacién de la transformada de Hough
usando la parametrizacién dada por la ecuacién (2.81) requiere mayor capacidad
computacional debido al manejo de curvas cosenoidales. Este ejemplo refleja la
importancia de elegir adecuadamente una parametrizacion que permita imple-
mentar la transformada de Hough de manera eficiente [58].

El principio de funcionamiento de la transformada de Hough se basa en acu-
mular las posibles soluciones a la que pertenezca un punto en la imagen. Por
ejemplo, si se pretende detectar lineas, entonces todo punto p en la imagen que
posiblemente pertenece a una linea se representa en el plano de Hough abar-
cando todas las posibles lineas que pasan por p. Este proceso se puede realizar
eficientemente empleando representacién de puntos y lineas en coordenadas pa-
ralelas como veremos a continuacion.

2.5.1. Coordenadas paralelas

Las coordenadas paralelas fueron introducidas con la finalidad de represen-
tar graficamente objetos que existen en multiples dimensiones. Este sistema de
coordenadas es de mucha utilidad para el procesamiento de imégenes. Adems4s,
sirve para analizar otros problemas de diferentes areas de estudio. Por ejemplo,
se puede realizar una grafica alimenticia sobre de la tabla nutricional de varios
productos. Los ejes paralelos corresponde para cada grupo de macronutrientes y
la informacion generada puede aportar una sana alimentacién para el paciente.
En la figura 2.15 se muestra el ejemplo descrito donde indica el valor nutricional
de cada producto.

La literatura ha demostrado que el uso de coordenadas paralelas proporciona
una forma bastante eficiente de trabajar con lineas rectas [59,60]. Por esta razon,

2Imagen tomada de https://www.d3-graph-gallery.com/parallel.
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se utilizan coordenadas paralelas y la transformada de Hough para el disefio del
algoritmo de deteccién de lineas.

2.5.2. Transformada de Hough

Antes de comenzar a describir el método de la transformada de Hough, defini-
remos primero el espacio de cada plano. El plano imagen utiliza las coordenadas
cartesianas (z,y) y el plano de Hough utiliza las coordenadas cartesianas (u, v)
como se muestran en la figura 2.16. Por lo tanto, un punto en el plano imagen
se representa como p = [p;, py|T, ver figura 2.16(a). Asimismo, un punto p se
representa en el plano de Hough como una polilinea o de dos segmentos. Esta
transformacién se puede visualizar en la figura 2.16(b) y estd definida como

o = St1H[p], (2.82)
donde
+1 -1 0
St = 0 0 1f. (2.83)
-1 0 0
Considere una linea £ que contiene puntos p;, kK = 1,2,...,n, como se mues-

tra en la figura 2.16A(c). Las polilineas o, correspondientes en el plano uv inter-
sectan en el punto £ dado por

L=Hn"1s Ty (2.84)

En consecuencia, en el plano de Hough se produce un pico de intensidad en el
punto ¢ por la acumulacién de las polilineas o, como se muestra en la figura
2.16(d). Por lo tanto, el proceso para la deteccién de una linea en la imagen
se simplifica en el plano de Hough; solo se requiere un algoritmo simple de
deteccién de picos.

La transformada de Hough también es util para detectar puntos donde va-
rias lineas intersectan. Estos puntos son conocidos como puntos de concurrencia
como se muestra figura 2.16(e)-(f). Para ello, usamos primero la transformada
de Hough para detectar lineas y, al resultado, aplicamos nuevamente la transfor-
mada de Hough para detectar los puntos de concurrencia. En este proceso, nos
referimos a la primera transformada de Hough para detectar lineas, y sequnda
transformada de Hough para detectar puntos de concurrencia. En el apéndice
C se describe de manera formal la segunda transformada de Hough.

2.5.3. Mascara Gaussiana

La idea principal de la mascara Gaussiana consiste en suprimir informacién
del plano de Hough que no contiene las lineas de interés de acuerdo a estima-
ciones previas. Asi, la busqueda de lineas en el plano de Hough se limita al area
definida por la mascara Gaussiana. La transformada de Hough acumula todos
los posibles resultados de la deteccion de lineas. Para las lineas de carril solo se
necesita dos picos de intensidad alta en el plano de Hough. Los picos detectados
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Figura 2.16: A la derecha estd la representacién de puntos y lineas en el plano
imagen y a la izquierda su correspondiente representacion en el plano de Hough.
(a) Un punto p en el plano imagen se representa como (b) una polilinea o
en el plano de Hough. (¢) Una linea £ con puntos p, en el plano imagen se
representa como (b) un punto £ en el plano de Hough. (e¢) Un conjunto de
lineas concurrentes £; que intersectan en un punto p se representan como (f) un
conjunto de puntos 2 que son “colineales” a lo largo de la polilinea o
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(a) (b)

Figura 2.17: (a) D1, Dy y D3 son méscaras Gaussianas centrados en el origen.
(b) Méscara Gaussiana D centrado en el punto ¢ con dngulo de orientacién ¢.

no aseguran que sean las lineas del carril de interés a pesar que los contornos
fueron reducidos por el filtro de ventana. Dentro del carril ain existe informa-
cién adicional que ocasiona ruido a la deteccion. Por esta razén, se propone el
uso de una mascara Gaussiana para limitar el drea de busqueda de lineas. Este
filtro eliminara todos los puntos fuera de la regiéon donde se espera encontrar las
lineas de carril.

Podemos definir la méascara Gaussiana bidimensional como

—ax? — by2
w) 3 (2.85)

D(z,y) = exp (
donde a y b son los pardmetros que determinan el tamano del filtro a lo largo
del eje-z y del eje-y, respectivamente. El filtro definido en la ecuacién (2.85)
estd centrado en el origen del sistema de referencias como se muestra en la
figura 2.17(a). Sin embargo, las lineas detectadas pueden estar en posiciones y
orientaciones diferentes. Por ello, se realiza una transformacién del sistema de
referencia a la posicion t y orientacion ¢ esperadas de las lineas de interés como

(-0 (f]-)

donde R(¢) es una matriz de rotacién y ¢ un vector de traslacién dados como

R(¢) = Eﬁffﬁ _Smﬂ , t= [iﬂ : (2.87)

cos ¢

De esta forma, la médscara Gaussiana D(z’,y’) estard centrado en el punto
(tz,ty) con una orientacién dada por ¢ como se muestra en la figura 2.17(b).
Como primera instancia, se utiliza el angulo y la posicién dadas por las lineas
de referencia. Después, se toman las lineas detectadas en imagenes previas.
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(a) (b)

Figura 2.18: (a) Vista del plano de referencia cuando el vehiculo se encuentra
centrado y alineado. (b) Imagen observada por la cdmara.

2.6. Estimacion de posiciéon y orientacion

En esta tesis usamos las lineas de carril detectadas para estimar la posicion y
orientacién del vehiculo. Para esto, partimos de las definiciones de lineas de carril
descritas en la Ec. (2.76) de la subseccién 2.4.3. Las lineas £y, y £; representan
el caso particular cuando el vehiculo se encuentra centrado y alineado (z = 0.5
y ¢ = 0), como se muestra en la figura 2.18(a). En el caso general, donde el
vehiculo se encuentra en cualquier otra posicién y orientacién (z, ¢), las lineas
de carril estaran dadas por

_ cos ¢ _ cos ¢
EO = )\0 sinqb s £1 = )\1 sinqb s (288)
—T o

donde Ay y A1 son dos escalares cualquiera diferentes de cero.

En un proceso previo de calibracion, determinamos la geometria entre el piso
y el plano imagen calculando la homografia G usando alguno de los métodos
descritos en la seccién 2.1. Una de las formas mas directas es usando el cua-
drildtero resultante de algin rectdngulo en la escena, ver subseccién 2.1.4. Asi,
la matriz homografia G estara disponible.

Del método propuesto para deteccién de lineas de carril, obtenemos como
resultado los vectores myg y m; que representan las lineas de carril detectadas.
Podemos emplear la matriz homografia G' disponible para relacionar las lineas
de carril en el plano del piso con las lineas detectadas en el plano imagen como

by =GTrmg = |lo, |,
R (2.89)

l =G, = |0,
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Usando la Ec. (2.88) en (2.89), se obtienen las igualdades

Lo, = Ao cos @,
lZO,y = A\ sin ¢,
tio’z = ot (2.90)
{1 = A1 cos,
gl,y = A1 sin ¢,

(1 z = —>\1 - )\15(1.

De esta forma, podemos calcular la posiciéon z y orientacién ¢ usando las com-
ponentes de £y y £1 como

1[4 0,
tang = = 2y 4 by ,
2 EO,II gQ,aL‘

_ (2.91)
1(1- b+ M\
=l + 222 )
T <)\0 0= TN )
donde A\g y A1 se calculan usando
A =G0+ 0oy
O T 0y (2.92)

X=B, 1B,

La navegacion asistida utiliza la disponibilidad de la posicién y orientacion
del vehiculo para retroalimentar el sistema. Para una buena navegacion, es ne-
cesario minimizar los errores de mediciones calculados. Para esto, se implemen-
taron mejoras a la deteccién de lineas de carril mediante el uso de un filtro de
ventana y méscara Gaussiana. Sin embargo, existen casos extremos donde las
lineas de carril tiene poca o nada de visibilidad en la escena observada. Las
lineas de carril se pierden y cuando se puedan volver a visualizar, la posicién y
orientacién cambiaran drasticamente ocasionando la inestabilidad del sistema.
Algunos factores que atribuyen a esta causa son la oclusién por objetos, de-
gradacion de piso, iluminacién y discontinuidad de lineas, entre otras. Por esta
razén, se propone implementar un algoritmo de prediccién de lineas de carril pa-
ra evitar los cambios drésticos en lineas de carril. A continuacién describiremos
formalmente este proceso de prediccién usando las posiciones y orientaciones
calculadas previamente para suavizar la deteccién de lineas de carril.

2.6.1. Prediccidon de lineas de carril

El método de prediccién de lineas de carril se basa en proporcionar una nueva
medicién dada por las entradas de estimaciones previas. Para esto, utilizamos
el método de minimos cuadrados recursivos con factor de olvido para predecir
los pardmetros del sistema. El factor de olvido asigna la importancia que tiene
las estimaciones previas, entre mas antiguas sean, menor importancia van a ser.
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El método de minimos cuadrados recursivos con factor de olvido es descrito de
manera formal en el apéndice A.

Utilizando la notacién [-], como la estimacién actual, [-]y—1 como estimacio-
nes previas; podemos escribir la prediccion de la posicién del vehiculo como

Ty = Tp—1 + [(Pk,la;‘f)/(A + ekPk,lef)] ¢k, (2.93)

donde 0 son las variables de regresién, A es el factor de olvido, £ es el error de
la funcién, y
Pi_1 =065l _1AO;_,
Or_1 = [67,6%,01,....0] ], (2.94)
A = diag( A1 AF=2 \E=3 0000000,

De la misma manera, la orientacién del vehiculo se puede predecir como

b = -1+ | (Pe16])/ (N + 0 Pe16]) | & (2.95)

En el siguiente capitulo se evaluara el desempeno del método propuesto
procesando secuencias de video del mundo real. Se realizara la descripcién de
las plataformas utilizadas para las pruebas experimentales. Se presentaran los
detalles importantes de la implementacion del método propuesto y la calibracion
de la cdmara de un robot mévil. Finalmente, los resultados obtenidos serdan
analizados y discutidos.
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Capitulo

Desarrollo experimental y
resultados

3.1. Plataforma experimental

En este trabajo de tesis, se utilizan dos plataformas para la implementacion
del algoritmo de navegacién visual de un robot. En la figura 3.1 se muestra el ro-
bot mévil terrestre OSOYOO utilizado para realizar la navegacién en una pista
experimental. El sistema esta equipado con una tarjeta Raspberry Pi 3 B+ para
el control y la comunicacién del vehiculo. Esta tarjeta es una pequena compu-
tadora de gran utilidad para controlar la velocidad de los motores, adquisicién
de imagenes por la cdmara y conexién a la red para transferir los datos hacia
otra plataforma. Para realizar el procesamiento de datos, se usa una compu-
tadora de escritorio equipada con el procesador grafico NVIDIA Geforce GTX
760 para ejecutar tareas de computo paralelo, como se muestra en la figura
3.2. Esta computadora se utiliza para ejecutar los algoritmos de procesamiento
propuestos.

En la figura 3.3, se muestra la pista experimental para la navegacién del
robot mévil terrestre. Las grabaciones son capturadas para el procesamiento del
algoritmo desarrollado y posteriormente, son evaluado de acuerdo al desempeno
y robustez de la estimacién de posicion y orientacién del vehiculo.

3.2. Implementacién en computo paralelo

El paradigma de los algoritmos paralelos es la ejecucion simultanea de tareas.
Esto genera ventajas como la ejecucién de tareas en muiltiples procesadores, la
capacidad de resolver problemas de alta complejidad y mejoras en tiempos de
respuesta, entre otros. Para esto, se tiene que realizar un nuevo diseno paralelo
para independizar las tareas. En el algoritmo de la deteccién de lineas de carril

37
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(a)

Figura 3.1: Plataforma para navegacién y adquisicién de imdgenes. (a) Camara
convencional conectada a la tarjeta de desarrollo Raspberry Pi 3 B+. (b) Robot
movil ensamblado.

(a) (b)

Figura 3.2: Plataforma para procesamiento de imdgenes. (a) Computadora de
escritorio. (b) Tarjeta de video NVIDIA Geforce GTX 760.

se paralizaron varias tareas, especificamente, la detecciéon de contornos y la
transformada de Hough como se muestra en la figura 3.4. Los detalles de cada
tarea se describen a continuacién.

Primeramente, se recibe la imagen capturada en la unidad central de proce-
samiento (CPU por sus siglas en inglés Central Processing Unit), y se transfiere
a la memoria de unidad de procesamiento grafico. Después, se realiza la detec-
cién de contornos para cada punto de la imagen en los procesadores del GPU.
A continuacion, cada punto de los contornos son procesados para encontrar su
respectiva polilinea y se acumulan en cada coordenada del plano de Hough. Des-
pués, se retornan los puntos acumulados hacia la memoria del CPU. Finalmente,
se detectan las dos lineas representadas por los picos de intensidad alta en el
plano de Hough.

En la figura 3.5(a)-(d) se observa una secuencia de imdgenes de un patrén
cuadro-radial en diferentes perspectivas. Las imagenes son procesadas utilizando
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Figura 3.3: Pista de prueba para navegacién de un robot mévil terrestre.

el algoritmo paralelo para la deteccién de lineas. El resultado de las detecciones
se puede visualizar en la figura 3.5(e)-(h). Las lineas detectadas son utilizadas
para encontrar la concurrencia entre ellas usando la segunda transformada de
Hough (consultar Apéndice C).

La implementacién en cémputo paralelo (CUDA) fue favorable comparan-
do el tiempo de respuesta con el obtenido en la implementacién del algoritmo
secuencial en el software MATLAB. Usando la tarjeta de procesador grafico
NVIDIA Geforce GTX 760, se obtuvieron los resultados presentados en la tabla
comparativa 3.1. La implementaciéon de computo paralelo tiene una mejora de
29X (872.12 ms/29.77 ms = 29.29) en el rendimiento del sistema. Debido a su
tiempo de ejecucién se obtiene una mejora en la estabilidad del sistema.

3.3. Calibracion de camara

Como hemos visto anteriormente, la estimacién de parametros intrinsecos
y extrinsecos de una camara requieren multiples homografias. Adicionalmente,

CPU GPU

Captura de imagen > Bordes - edge(/,MN)

Polilineas - mpen(./,u,MN)

@ Lineas - houghpeaks(]) | < T Acumulador - spht( o ,MN)

Figura 3.4: Arquitectura del algoritmo de la transformada de Hough en cémputo
paralelo.
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(d)

() ..
et

(9)

Figura 3.5: (a)-(d) Secuencia de imdgenes de un patrén cuadro-radial en dife-
rentes perspectivas. (e)-(h) Representacién de las imagenes (a)-(d) en el plano
de Hough.

Cuadro 3.1: Comparacion en tiempos de ejecucion para cada implementacion.

Deteccién Transformada | Cuadros por

de contornos | de Hough segundo (fps)
MATLAB 12.85 ms 853.27 ms 1.15 fps
CUDA 0.23 ms 29.54 ms 33.59 fps

para la estimacién de homografias se requieren tres puntos en el plano imagen:
., €l punto al infinito en direccién x, p,, el punto al infinito en direccién y, y u..,
la imagen del origen. Por conveniencia, se utiliza la transformada Hough para
detectar los puntos del plano imagen requerido. A continuacién, se describiran
los pasos que se realizaron para la calibracion de la cadmara del robot mévil.

Primeramente, se capturaron 32 im&genes en diferentes puntos de obser-
vacién al patron de calibracién como se muestra en la figura 3.6. Después, se
utiliz6 la transformada de Hough para detectar los puntos del plano imagen ()
de cada imagen. Como siguiente paso, los puntos p,, py, y pt.. fueron procesados
para calcular la homografia cada imagen. Finalmente, todas las homografias
calculadas fueron utilizadas para la estimacién de los parametros intrinsecos y
extrinsecos de la camara. Los parametros intrinsecos y extrinsecos resultantes
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Figura 3.6: Patrones de calibracién capturados por la cimara del robot moévil
terrestre.

son

[2,0184 0 0,0359

K=| 0 26129 —04382],
0 0 1
[0,9997  0,0215 —0,0109

R= (00209 —0,5473 0,8367 |, v (3.1)
10,0121 —0,8367 —0,5476
[ 22,1248

t = |—255,3641
| 158,7193

Los parametros obtenidos de la cimara son utilizados para formar la homo-
graffa del sistema.

3.4. Correccion de imagenes distorsionadas

En esta seccién se va estimar la distorsién radial de la lente que tiene la
camara del robot modvil. Para esto, se analiza la diferencia entre un plano de
referencia observado y el plano imagen. Por esto, capturamos los patrones de
franjas desplegados en un monitor de computadora (plano de referencia) como
se muestra en la figura 3.7. Se utiliz6 una rejilla con una unica franja (frecuencia
espacial f = 1) con 16 corrimientos de fase. No fue necesario usar rejillas de
mayor frecuencia debido a que el monitor usado para desplegar las rejillas no
presenta distorsion gamma. Ademads, al usar la frecuencia f = 1, se evita el
proceso de desenvolvimiento de fase [43].
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Se capturaron dos conjuntos de 16 patrones de franjas (16 patrones de fran-
jas por cada eje coordenado, x, y). Los 32 patrones de franjas resultantes son
procesados usando el método de corrimiento de fase [G1]. En la figura 3.8, se
presenta la fase extraida, que corresponde a las coordenadas de los puntos del
plano de referencia (sin distorsién). Los puntos del plano de referencia se com-
paran con los puntos del plano imagen (afectados por distorsién radial de la
lente).

Las correspondencias de puntos resultantes (puntos con distorsién y sin dis-
torsién) son procesadas para estimar los pardmetros de distorsién aplicando el
método analizado previamente en el capitulo 2. El resultado de la estimacién de
parametros es

d=1[09567 —0,0320 0,1911 —0,0012 0,0098]" . (3.2)

Usando los parametros de distorsién estimados, se puede realizar correccién
de distorsién radial de la imagen de entrada. En la figura 3.9(a), se muestra una
imagen de las lineas de carril capturada por la cidmara del robot. Empleando los
parametros estimados, se corrige la distorsién radial de la imagen empleando la
Ec. (2.56). En la figura 3.9(b), se muestra el resultado de la correccién de distor-
sién. Este proceso de correccion de distorsion radial mejora significativamente
el proceso posterior de deteccién de lineas como se vera mas adelante.

Figura 3.7: Patrones de franjas capturadas por la cdmara del robot movil te-
rrestre. (a) Franja en direccién z. (b) Franja en direccién y.

3.5. Deteccion de lineas de carril

En esta seccion se van a aplicar los métodos analizados para realizar detec-
cién de lineas de carril. Se evaliua el funcionamiento del algoritmo propuesto
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@__ O

Figura 3.8: Extraccién de fase con el método de corrimiento de fase. (a) Fase en
direccién z. (b) Fase en direccién y.

(a) (b)

Figura 3.9: Correccién de distorsién utilizando los pardmetros estimados. (a)
Imagen con distorsién. (b) Imagen sin distorsién.

para la deteccién de lineas de carril en diferentes escenas como se muestra en la
figura 3.10 (las secuencias de video fueron tomadas de una base de datos piiblica
disponible en https://bdd-data.berkeley.edu/).

En el primer paso, se aplica el método de Canny para detectar los contornos
de la escena observada. Para la figura 3.10(a), el resultado de la deteccién de
contornos se muestra en la figura 3.11(a). En el segundo paso se obtiene la
transformada de Hough para deteccién de lineas. La figura 3.11(b) muestra la
transformada de Hough correspondiente a los contornos detectados mostrados
en la figura 3.11(a). En el plano de Hough, las lineas de carril de interés deben
corresponder a los dos picos de mayor intensidad. Para fines ilustrativos, las
lineas detectadas son desplegadas en la imagen de entrada como se muestra en
la figura 3.11(c).

De la figura 3.11(c) se puede observar que la deteccién de lineas de carril
presenta una desviacion considerable. Las lineas detectadas estan desalineadas
respecto a las lineas de carril reales debido a errores en la deteccién. Para mejorar
la exactitud en la deteccién de lineas de carril, se usa un filtro de ventana para
discriminar contornos ajenos a la pista, y una mascara Gaussiana para mejorar
el espacio de busqueda en el plano de Hough.
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Figura 3.10: Capturas de tres secuencias de video para la evaluacion del método
propuesto. (a) Imagen en donde la mayor parte de la escena no corresponde a la
pista. (b) Imagen en donde las lineas de carril son curvas. (c) Imagen en escenas
con lineas de carril discontinuas y multiples carriles.

3.5.1. Filtro de ventana

Ademis de los contornos que corresponden a las lineas de carril, en la escena
existen contornos que corresponden a otros objetos en la escena. Por ejemplo,
arboles, arbustos, postes de lineas eléctricas, otros vehiculos, seniales de transito,
etc. Los contornos adicionales en la escena introducen polilineas adicionales en el
plano de Hough. Las polilineas adicionales son ruido que incrementa la dificultad
para hallar los picos de intensidad méxima que corresponden a las lineas de carril
de interés. Para reducir esta fuente de ruido, se empleé un filtro de ventana con
€ = para suprimir todos los contornos no ttiles para la deteccién de las lineas
de interés, como se muestra en la figura 3.11(d).

Se debe mencionar que al eliminar los contornos que no corresponden a la
pista también se acelera el proceso de obtencion de la transformada de Hough.
Esto se debe a que al reducir el nimero de contornos, también se reduce el niime-
ro de polilineas que se deben acumular como se muestra en la figura 3.11(e). En
la figura 3.11(f) se muestra que la deteccién de las lineas de carril ha mejorado,
pero aun existe un error que se debe reducir.

3.5.2. Mascara Gaussiana

En la figura 3.11(e) se puede observar que hay més de dos picos de intensidad
maxima. Esto se debe primero a que cada linea de carril genera dos lineas
asociadas a sus contornos. Ademaés, en la escena no solo existen dos lineas de
carril, sino tres. Por esta razén, en el plano de Hough aparecerdan mas de dos
picos de intensidad méaxima en lugar de solo dos picos como se esperaria en el
caso ideal.

Para evitar este problema, se utilizaron las mascaras Gaussianas para limitar
el drea de busqueda en el plano de Hough a aquellas regiones donde se espera
encontrar los pico de intensidad maxima. Con una méscara, se espera detectar
el pico de intensidad que representa una linea de carril de interés. Por motivos
ilustrativos, las dos mascaras Gaussianas son presentadas al mismo tiempo en
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(a) (b) (c)

(g) (h) (i)

Figura 3.11: (a)-(c) Deteccién de lineas de carril sin el uso filtros. (d)-(f) De-
teccién de lineas usando el filtro de ventana para discriminacién de contornos.
(g)-(i) Deteccidn de lineas utilizando el filtro de ventana y la méscara Gaussiana.

el plano de Hough, como se muestra en la figura 3.11(h). De esta forma, la
exactitud en la deteccion de las lineas de carril mejora significativamente como
se observa en la figura 3.11(1).

3.5.3. Lineas de carril curvas

La robustez del algoritmo propuesto se verificé procesando una secuencia de
video donde aparecen lineas de carril curvas, ver figura 3.10(b). En este experi-
mento se encontré que el método propuesto funciona correctamente detectando
curvas de hasta ¢ = 10 grados respecto a la direcciéon de desplazamiento. En la
figura 3.12 se muestra el resultado del procesamiento de la deteccion de lineas
de carril en la escena observada.

De forma similar a la prueba anterior, se observa que la exactitud en la
deteccién de lineas de carril mejora con la aplicacion del filtro de ventana y la
mascara Gaussiana. Observe que la camara fue colocada de tal forma que en la
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(a) (b) (c)

[x = 0.54814
phi = 0.043114

Figura 3.12: Evaluacién del funcionamiento del algoritmo propuesto en lineas
curvas. (a)-(c) Deteccién de lineas de carril sin el uso filtros. (d)-(f) Deteccién
de lineas usando el filtro de ventana para discriminacién de contornos. (g)-(i)
Deteccién de lineas utilizando el filtro de ventana y la méscara Gaussiana.

imagen la pista abarca la mayor parte de la imagen. Esto es conveniente debido
a que la informacién capturada por la imagen corresponden en mayor medida a
las lineas de carril de interés. Por lo tanto, la acumulacién de polilineas asociadas
a los contornos detectados forman picos de intensidad bien definidos en el plano
de Hough, como se muestra en la segunda columna de la figura 3.12.

Con esta prueba, se confirma que es recomendable, tanto el uso de los filtros
propuestos, como una buena colocacién de la camara para capturar en mayor
medida la informacién de la pista reduciendo al mismo tiempo los contornos
innecesarios para la deteccién de lineas de interés.

También se puede mencionar que el algoritmo propuesto es capaz de detectar
lineas rectas con bajo error cuando las lineas de carril son curvas. Para esto,
se reduce el campo de visién de la camara para limitar la longitud observada
del carril en la escena. En otras palabras, las lineas de carril curvas se pueden
aproximar a lineas rectas a corta distancia desde la camara. Asi, ajustando
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Figura 3.13: Evaluacién del funcionamiento del algoritmo propuesto en escenas
de la vida real. (a)-(c) Deteccién de lineas de carril sin el uso filtros. (d)-(f)
Deteccién de lineas usando el filtro de ventana para discriminacién de contornos.
(g)-(i) Deteccidn de lineas utilizando el filtro de ventana y la méscara Gaussiana.

la extensién del campo observado en la escena se puede obtener una buena
deteccion de las lineas de carril atin cuando estas presenten curvatura.

3.5.4. Lineas discontinuas y multiples carriles

Se realiz6 otra prueba en donde el método propuesto se evalué procesando
una secuencia de video capturada en una zona urbana tipica. En este nuevo
escenario, aparecen otras dificultades tales como lineas discontinuas, multiples
carriles alrededor de la pista observada, oclusiones por otros vehiculos, lineas de
contencién, senales de transito, y fachadas de edificios, entre otros, ver figura
3.10(c).

En esta prueba, la transformada de Hough detecta una mayor cantidad de
lineas que estdn presentes en la escena, mientras que las lineas de carril de
interés se vuelven menos visibles debido a las discontinuidades de los trazos y
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oclusiones. Aun en este escenario complejo, el método de deteccion de lineas de
carril propuesto logra buenos resultados y destaca la mejora que proporciona la
aplicacién del filtro de ventana y Gaussiano como se muestra en la figura 3.13.

En la implementacion actual, el método propuesto detecta un carril. Sin
embargo, cuando se realiza una cambio de carril, el método propuesto mantendra
la deteccién en el carril inicial y no en el carril actual. Este caso se puede detectar
usando la variable x que indica la posicién relativa respecto al carril. En el plano
de referencia, las lineas de carril son z = 0 y £ = 1. Por lo tanto, la posicién
del vehiculo serd x = 1/2 cuando el vehiculo estd centrado en el carril. De esta
forma si la posiciéon = es mayor que +1, indicard que el vehiculo ha cambia al
carril derecho. De forma similar, si la posicién x es menor que cero, entonces
el vehiculo se encontrara en el carril izquierdo. Se puede desarrollar una rutina
que detecte estas transiciones y asi restablecer el enfoque en el nuevo carril del
vehiculo.

3.6. Estimacion de posicién y orientacién

Se utilizaron 100 secuencias de video que presentan diferentes escenarios de
manejo, horas del dfa, y cambios climaticos (las secuencias de video fueron toma-
das de una base de datos publica disponible en https://bdd-data.berkeley.
edu/). Cada secuencia de video es procesada con el algoritmo desarrollado. Los
resultados son capturados y presentados en las figuras 3.14-3.17. De los resul-
tados obtenidos, se encontraron escenarios donde la deteccién de lineas es mas
complicada, tales como, lineas de carril con oclusion, lineas curvas, cambio de
carril, carril sin lineas y oclusiéon por vehiculos. Algunos de estos problemas
fueron mencionados en las evaluaciones anteriores.

El problema de oclusién de lineas se encuentra presente en miltiples se-
cuencias de video. Las lineas de carril son fuentes importantes para el método
propuesto de estimacion de posicién y orientacién del vehiculo. La pérdida de
esta fuente de informacion afecta los resultados de las mediciones debido a que
la transformada de Hough no puede detectar lineas ocluidas. En consecuencia,
la posicién y orientacién determinada son erréneas. Para evitar este problema,
se propuso un método de estimacién usando minimos cuadrados recursivos con
factor de olvido que aprovecha el resultado de estimaciones previas para calcular
una nueva posicién y orientacién actual.

En la figura 3.18 se presenta una secuencia de video donde las lineas de ca-
rril se pierden de vista por oclusién de un vehiculo. Sin embargo, el algoritmo
propuesto es capaz de mantener una estimacién de linea estable aprovechando
las estimaciones realizadas antes de la oclusién. Para esto, las lineas son de-
terminadas por la posicién y orientacion calculada por el método de minimos
cuadrados recursivos con factor de olvido analizado previamente en el capitulo
2.5. El resultado de la prediccién de lineas de carril en esta prueba se muestra
en la figura 3.18(a)-(e). Estos resultados demuestran la robustez del algoritmo
propuesto ain cuando las lineas de carril no son visibles temporalmente en la
pista, como se muestra en la figura 3.18(f)-(j).
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Figura 3.14: Primer conjunto de secuencias de video. (a)-(y) Capturas de se-
cuencias de video para evaluar el desempeno del método propuesto en diferentes
escenarios.

3.7. Navegaciéon de un robot moévil terrestre

Las evaluaciones previas del algoritmo propuesto fueron realizadas usando
secuencias de video obtenidas de una base de datos que colecta rutinas de na-
vegacion de automoviles. De estas evaluaciones se encontré que la estimacién
de posicién y orientacién del vehiculo usando es método propuesto es eficiente
y robusta. Para el siguiente experimento, se evaluard una secuencia de video de
navegacion de un robot movil terrestre en una pista experimental.

El procesamiento de la secuencia de video es similar a las evaluaciones an-
teriores. Sin embargo, la cdmara utilizada en el robot mévil presenta distorsion
radial considerable, como se muestra en la figura 3.19(a)-(e). La distorsién ra-
dial ocasiona una mala visualizacién y alto error en la deteccién de lineas de
carril debido a que las lineas rectas se convierten en lineas cuervas. Este pro-
blema se resolvié usando el método de correcciéon de distorsion radial descrito
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Figura 3.15: Segundo conjunto de secuencias de video. (a)-(y) Capturas de se-
cuencias de video para evaluar el desempeno del método propuesto en diferentes
escenarios.

previamente en esta tesis. Los parametros de distorsién fueron estimadas pre-
viamente en la seccién 3.4. La imagen corregida proporciona nuevos puntos en
las coordenadas del plano y son utilizados para detectar los contornos de la
imagen, como se observa en la figura 3.19(f)-(j). Después, se detectan las lineas
de carril con la transformada de Hough y se limitan la bisqueda de picos de
intensidad maxima con las méscaras Gaussianas, como se ilustra en la figura
3.19(k)-(0). Finalmente, se estiman la posicién y orientacién usando las lineas
de carril disponibles.

En la figura 3.19(p)-(t), se presentan los resultados obtenidos y se mostrd
la robustez del algoritmo propuesto atin usando camaras con distorsién radial.
La estimacién de posicién y orientacién de un robot movil es eficiente y las
estimaciones realizadas pueden emplearse para realizar retroalimentacion para
el controlador del robot mévil.
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Figura 3.16: Tercer conjunto de secuencias de video. (a)-(y) Capturas de se-
cuencias de video para evaluar el desempeno del método propuesto en diferentes
escenarios.

3.8. Discusiones

Los resultados experimentales obtenidos han demostrado la eficiencia y la ro-
bustez del método propuesto en diferentes escenarios del mundo real. Se mostro
la utilidad del modelo de camara pinhole aiin cuando se utilizan camaras que
presentan distorsiéon radial. Esto es posible gracias a la estimacion de parame-
tros de distorsién radial y su uso para correccién de distorsion en las imagenes
procesadas.

La primera etapa del método propuesto consiste en detectar los contornos de
la escena. Se empled el método de Canny para detecciéon de contornos debido a su
eficiencia computacional.Se usé un filtro Gaussiano con una desviacion estdndar
de v/2 para minimizar el ruido de las iméagenes de entrada. Los contornos son
suprimidos mediante un umbral para las intensidades que sea mayor a 0,35 y
un umbral para las intensidades que sea menor a 0,65. Posteriormente, se usé
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Figura 3.17: Cuarto conjunto de secuencias de video. (a)-(y) Capturas de se-
cuencias de video para evaluar el desempeno del método propuesto en diferentes
escenarios.

un filtro de ventana para separar la informacién entre la pista y otros objetos
de la escena.

En una segunda etapa, se aplicé la transformada de Hough en coordenadas
paralelas para deteccion de lineas. En el plano de Hough, se usé un maéscara
Gaussiana para limitar la region de busqueda de las lineas de carril esperadas
en un area especifica. Las regiones de interés fueron determinadas usando como
referencia las detecciones previas de lineas de carril. De los resultados obtenidos,
se comprobé que los filtros usados mejoraron significativamente el proceso de
deteccién de lineas. Asimismo, se redujo el tiempo de respuesta del método
propuesto al implementar los algoritmos usando cémputo paralelo.

En la dltima etapa, la posicion y orientaciéon del vehiculo se estimé usando
la matriz homografia del sistema y las lineas de carril detectadas. Finalmente,
se utiliz6 el método de minimos cuadrados recursivos con factor de olvido para
proporcionar estimaciones cuando las lineas de carril no son visibles o varian sig-
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Figura 3.18: Secuencia de imdgenes para la evaluacién del algoritmo propuesto
en lineas de carril no visibles. (a)-(e) Prediccién de lineas de carril en oclusién
por un vehiculo, y (f)-(i) su visualizacién de los contornos detectados, respecti-
vamente.

nificativamente por ruido aleatorio. Este método permite suavizar la transiciéon
entre detecciones de lineas de carril, y en general, la estabilidad del sistema.

Los resultados mostraron que es posible detectar lineas de carril curvas atin
cuando el método propuesto fue disenado asumiendo lineas de carril rectas. Sin
embargo, si la curvatura de las lineas es mayor que 10 grados respecto a la direc-
cién de desplazamiento, la precisién en la estimacién de posicién y orientacién se
reduce. En este caso, se puede incrementar la precision reduciendo el campo de
visién para limitar la longitud observada de la pista y la aproximacion a lineas
rectas siga siendo vélida.

El método propuesto es robusto ante la presencia de brillo ambiental y sa-
turacién. Esta fuente de ruido ocasiona cambios en la intensidad de los pixeles
provocando lineas adicionales en la transformada de Hough. Aun asi, se logré
una buena deteccion de lineas de carril mediante el uso de las mascaras Gaus-
sianas propuestas.

De la navegacion del robot mévil en la pista experimental se observaron los
siguientes comportamientos del algoritmo desarrollado. Primero, los azulejos del
piso ocasionaron lineas adicionales en la deteccién de contornos, y en el plano
de Hough, el pico de intensidad méaxima pertenecia a las lineas de los azulejos
debido a su trazo recto, en contraste a la curvatura de las lineas de interés
que limitan la pista. Para atenuar esta fuente de ruido, se redujo el tamano
del filtro de ventana en la deteccién de contornos hasta ajustar las lineas de
carril de interés. Segundo, se ajusté el campo de observacién en la escena para
detectar las lineas curvas del carril en la pista experimental. Cuando el campo
de observacién es pequeno, las lineas de carril no se visualizan correctamente.
Cuando el campo de observacién es grande, se visualizaban lineas adicionales
que no son utiles. Ambos casos provocan errores en la deteccién de lineas de
carril. Para reducir el efecto de estas fuentes de error, se incrementd el factor de
olvido del estimador de minimos cuadrados y se ajusté el campo de observacién
a un punto medio entre el campo cercano y lejano de la cadmara. Por ultimo,
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Figura 3.19: Evaluacién del algoritmo propuesto en una secuencia de video de
la navegacién de un robot mévil terrestre. (a)-(e) Imégenes de entrada con dis-
torsion radial. (f)-(j) Deteccién de contornos con su respectivo filtro de ventana
para las imdgenes (a)-(e) con distorsién corregida. (k)-(o) Picos de intensidad
méxima limitado por la regién de interés en el plano de Hough. (p)-(t) Resul-
tados de deteccion de lineas de carril y estimacién de posicién y orientacién del
robot movil terrestre.

los giros del robot moévil en las curvas no son constantes debido al diseno del
carril. Las estimaciones son erréneas cuando el robot realiza rotaciones bruscas.
En estos casos, el factor de olvido del predictor por minimos cuadrados se debe
reducir; sin embargo, esto hace que el algoritmo sea sensible al ruido aleatorio
como se describié anteriormente.
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Conclusiones

En este trabajo de tesis se abordé el problema de estimacién de la posicién
y orientacién de un robot mévil terrestre usando lineas de carril como fuente de
informacién. El método propuesto se disend considerando el enfoque de sistemas
opto-digitales para el procesamiento de imagenes. Para ello, se analizaron los
modelos fisicos del proceso de formacién de imagen y la flexibilidad que ofrece
la implementacion de algoritmos en computadoras digitales para procesamiento
de datos.

En los algoritmos de estimacién propuestos, se consideré el modelo de cama-
ra pinhole para simplificar el andlisis y reducir la complejidad de los modelos
matematicos. Para hacer validos estos algoritmos en camaras que presentan
distorsion debido a la lente, se consideré una etapa adicional de correcciéon de
distorsién radial. Para definir la posicién y orientacién relativa entre un plano de
referencia y la camara, se consider6 la relacién entre homografias y los pardme-
tros intrinsecos y extrinsecos de la camara.

Para la estimacion de posicién y orientaciéon usando lineas de carril como
referencia, se propuso un algoritmo que consiste en dos etapas. Primero, se
realiza deteccion de las lineas de carril, y, segundo, se determina la posicién y
orientacién del robot mévil terrestre a partir de las lineas de carril detectadas.
Se emple6 el método de Canny para deteccién de contornos en la escena. Se
implementd la transformada de Hough en coordenadas paralelas para deteccion
de lineas de carril.

Para mejorar la exactitud en la deteccién de lineas de carril, se propuso el
uso de un filtro de ventana para separar la informacién entre la pista y otros
objetos de la escena que interfieren con la deteccién. En el plano de Hough, se
us6 una mascara Gaussiana para limitar la regién de bisqueda de las lineas de
carril al area donde se esperaria encontrarlas en base a imégenes previas. Se
agregd una etapa de correccién de distorsién radial para mejorar los resultados
de la deteccién atn usando una cadmara convencional de bajo costo.

El algoritmo de navegacién visual propuesto fue validado procesando secuen-
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cias de video tomadas del mundo real. La cdmara fue calibrada para obtener
tanto los parametros intrinsecos, extrinsecos y distorsion radial. Los resultados
obtenidos mostraron la eficiencia y robustez del método propuesto. El costo
computacional fue reducido por la discriminacién de contornos en areas que
no corresponden a la pista. También, se incrementd la velocidad de respuesta
implementando los algoritmos en computo paralelo usando una unidad de pro-
cesamiento grafica (GPU) con arquitectura unificada de dispositivos de cémputo
(CUDA por sus siglas en inglés Compute Unified Device Architecture). Mas ain,
debido a su simplicidad, los algoritmos desarrollados pueden ser implementados
facilmente en otras plataformas computacionales y con otros lenguajes de pro-
gramacion. Los resultados obtenidos mostraron que lo métodos opto-digitales
son factibles para aplicaciones de navegacion visual e instrumentacion éptica en
vehiculos reales.

Como trabajo futuro, se debe considerar el andlisis de fuentes de error para
robustecer el método propuesto a perturbaciones tales como lineas de carril cur-
vas, senalamientos, semaforos, automoviles, cruces peatonales, y baja visibilidad
por lluvia, sombras, y neblina entre otras.



Apéndice

Minimos cuadrados recursivos con
factor de olvido

El método de minimos cuadrados es un proceso que se usa para predecir los
pardametros de un sistema optimizando los resultados de datos experimentales.
Este método utiliza un criterio basado en minimizar el error obtenido entre los
datos experimentales y la salida del modelo teérico dado por

E=-9)°=@w-9¢"07 (A1)
donde ¢ es el vector de variables de regresiéon y 6 son los parametros del sistema.

En el caso especifico para miltiples mediciones, la Ec. (A.1) se expande como

n

JO) =3 (v - 678 = £"E, (A2)

i=0
donde .
E= [§1a£27§37"‘7§n} (A?’)

Agregando el factor de olvido para reducir la importancia de las mediciones
antiguas, la Ec. (A.2) se reescribe como

J(@,)) = Z A (yi - ¢ié;)2 - [Y . @é} “A {Y - q»é] , (A.4)
=0

donde X es el factor de olvido, y

¢ = [¢?a¢ga¢gv"'a¢£v]7

6 =1[60,6:0;....6,], (A.5)

T
Y:[y17y27y37"'ayn] ’
A = diag( A"~ APT2 A3 A0,
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Desarrollando la Ec. (A.4), se obtiene la expresién a minimizar como

- - - o~ A6
JO,0) =YTY ~YTA®6 — 270" AY + 0767 AOD. (4.6)

Los parametros del sistema se pueden estimar usando la derivada de la fun-
cién J con respecto al vector de parametros e igualando a cero como

z‘g = —20TAY 4 20T APO =0,

(A.7)
—dTAY + ®TAPO = 0.

La solucién de esta ecuacion nos lleva a la estimacion de los pardmetros © del
modelo dados por

0 = (2TA®) 10T AY. (A.8)

La Ec. (A.8) se puede utilizar recursivamente para realizar estimaciones ite-
rativamente usando estimaciones previas. La recursividad permite optimizar
adaptativamente el calculo de una nueva estimacion y despreciar las parame-
tros antiguos del sistema. Para esto, definimos las estimaciones de los pardmetros
como

Or-1 = D; ! Zi_1, (A.9)
donde
Dy_1 = ®f_ | ADy_q,
Zy1 =®f_ AYy 4,

(A.10)
(I)k—l = [(i),{a d)gv ¢§7 sy d){—lv] )
T
Yk—l = [ylv Y2,Y3, .- 7yk71]
De la misma manera, podemos deducir la estimacion actual como
ék = Dk’le, (A.ll)
donde
Dy, = \Dy_1 + 91 ¢y, (A.12)
Z = Np_1 + b1y (A.13)

Dado las definiciones previas, se pueden determinar los pardmetros del sistema
©y. Sin embargo, la inversa de la Ec. (A.12) no puede ser determinada directa-
mente. Para esto, se describird una serie de pasos para calcular D,;l y simplificar
la Ec. (A.11).

Partiendo de la Ec. (A.12) y multiplicando D,:l por la izquierda, se obtiene

I=AD;'Dy1 4+ D¢ ¢y (A.14)
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Después, se multiplica D,;_ll por la derecha a la ecuacién previa, obteniendo

Dy—1 = ADi' + D ol . Di—1,
y multiplicando ¢ por la derecha a la Ec. (A.15), se tiene
Di-16y, = AD b + D' b ¢ D19
Por comodidad, la ecuacién anterior se renombra como K, es decir,

_ Dy_1¢},
A+ ¢ D1y

Al sustituir la Ec. (A.17) con la Ec. (A.15), se obtiene

= Dy_1¢} .

Dy—1 = AD;' + K¢, D191,

y finalmente D,;l se puede determinar como

L1
D' = <~ (Dy—1— K¢ Dy—1).

A
Los pardmetros del sistema Oy se obtiene usando las Ec. (A.11) y
como
. 1 T T
61 = 5 (Dio1 — K@y Diadl ) (AZir + b )
~ 1. . 1
= Or1 + Dy by — Kok —  Kdudiyre

que se puede simplificar ain més usando la Ec. (A.18) obteniendo

- - _ o1 1
Ok = O + Dy by — Kij + L Kdrbiiun — Y Kbyl e,
ék = ék—l + K&

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.19)

(A.20)

(A.21)

De acuerdo al anélisis de minimos cuadrados recursivo con factor de olvido,
la implementacién del algoritmo es simple para cualquier lenguaje de progra-
macion. El método posee grandes ventajas para su uso en diversas aplicaciones
de visién computacional. Para el caso especifico de aplicacién en navegacion
asistida de robots moéviles, se utiliza para predecir la posiciéon y orientacién del
vehiculo. Las estimaciones previas permiten generar un filtro para suavizar la
deteccién de lineas de carril. Debido a esto, se logra mantener estable la detec-

cién de lineas atin cuando el carril no es visible en algunos instantes.



60APENDICE A. MINIMOS CUADRADOS RECURSIVOS CON FACTOR DE OLVIDO



Apéndice

Rectificacion de imagenes

La rectificacién de imdgenes es una técnica de gran importancia debido a
que permite el desarrollo de aplicaciones de captura de escenas tridimensionales
[62]. Especificamente, esta técnica ayuda a resolver el problema de busqueda de
puntos de correspondencia para calcular la posicién de objetos en el espacio.
La rectificacion de imégenes permite determinar la profundidad de la escena y
posicién relativa de los objetos usando visién estéreo [63,64].

En la literatura se han reportado varios métodos de rectificacién de imagenes
explotando la geometria epipolar [15,65-67]. El concepto de geometria epipolar
simplifica el problema de biisqueda de puntos de correspondencia en un sistema
de camara estéreo. En un sistema estéreo, las camaras pueden ser diferentes y
estar desalineadas. En esta configuracion, el punto de interseccion entre la linea
que une los centros de proyeccion de las cdmaras y el plano imagen se denomina
epipolos. Las lineas que pasan por el epipolo se conocen como lineas epipolares.
Si e y €’ son los epipolos en el plano imagen de la primera y segunda cdmara,
respectivamente, entonces las lineas epipolares estan dadas como

£ =Hle] x H[x], (B.1)
¢ =Hle'] x H[z'], (B.2)

donde x y x’ son puntos en la imagen de la primera y segunda cdmara, respec-
tivamente. La relacién entre ambas puntos se puede definir como una transfor-
macién proyectiva G, dado que

' =H G Hx]. (B.3)
Al sustituir la Ec. (B.1) en la Ec. (B.3), se obtiene

¢V =e x G H|z] (B.4)

Esta ecuacién se puede reescribir usando la matriz antisimétrica [¢']x para re-
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presentar el producto cruz como

= [€']|«Gr H[zx], (B.5)

donde F' es la matriz fundamental y

0 —€e e

E
€lx=|¢ 0 —e.|. (B.6)
—ey, € 0

En la siguiente seccion, se desarrollard el método de transformacion lineal directa
para estimacién de la matriz fundamental. Posteriormente, se mostrara cémo
usar la matriz fundamental para realizar rectificaciéon de imagenes estéreo.

B.1. Estimacion de la matriz fundamental

La matriz fundamental F establece la relacién entre los puntos de corres-
pondencia de dos imagenes que capturan la misma escena. Este método de
estimacién, no requiere una calibracién explicita de las camaras. Usando puntos
de correspondencia (x, z’), la matriz fundamental se puede definir como

H]z'T|FH[x] = 0. (B.7)

Si las coordenadas de los puntos de correspondencia (x,2’) son conocidas, en-
tonces, usando la Ec. (B.7), se puede calcular los elementos de la matriz F. Es-
pecificamente, la ecuacién correspondiente al punto de correspondencia (z,y, 1)

y (2',y/,1) es

CC/.I‘Fll + l‘lyFlg + 1?/F13—|—
+y'wFo1 + y'yFay + ' Faz+
+ xF51 +yFsa + F33=0. (B.8)

Factorizando las variables desconocidas, se obtiene

[z, 2y, 2’y x, vy, Y x,y, 1] f = 0p, (B.9)

donde f =[Fi1 Fia Fiz Fo Fa Foy F3 F 1)7.

La matriz fundamental tiene nueve elementos a determinar; sin embargo, solo
existen ocho incégnitas porque la matrices fundamentales son unicas excepto
escala. Por lo tanto, se necesitan al menos ocho puntos de correspondencia para
estimar una matriz fundamental. Con n puntos de correspondencia, se obtiene
la siguiente ecuacién matricial:

[

TiT1 T T Ty Yivi Y T W
! / ! / ! !

ToTa  TaYa Ty TaYs YaY2 Yy T2 Y2 1
) . ) ) . ) . f=Af=0,, (B.10)

x%xn x%yn x% xny% ygyn y% Tn Yn 1
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que se puede resolver para f usando el método de descomposicién en valores sin-
gulares. En la siguiente seccion, se mostrard cémo emplear la matriz fundamental
para realizar rectificacién de imédgenes capturadas por un sistema estéreo.

B.2. Rectificacion

Partiendo de la Ec. (B.5), observamos que la matriz fundamental
F =[€']|«Gx (B.11)

contiene la homografifa del plano epipolar G y los epipolos e y e’ de ambas
camaras. Esta matriz F' relaciona los puntos de ambas imagenes. Por lo tanto,
para cada par de puntos de correspondencia (&, '), la matriz fundamental F'
satisface

Hlx'|T FH[x] = 0. (B.12)
Una propiedad de las imagenes rectificadas es que los epipolos se encuentran
en la coordenada i = [1,0,0]7. En este caso, la matriz antisimétrica de i es

la matriz fundamental del sistema rectificado. La nueva matriz fundamental se

define como
0

~1]. (B.13)
01 0

Sin embargo, para llevar un sistema estéreo general a un sistema estéreo rectifi-
cado equivalente, es necesario transformar las imégenes originales en un par de
imégenes rectificadas. Esta transformacion implica el uso de un par de homo-
grafias que se construyen a partir de la matriz fundamental del sistema.

Las homografias requeridas deben llevar los epipolos del sistema al punto
al infinito 4 = [1,0,0]7. Representamos las homografias necesarias como G y
G’ que se aplicaran a las imdgenes I e I, respectivamente. Los puntos x y @’
del par de imégenes son transformados de tal forma que la imagen resultante
satisfaga la geometria epipolar de un sistema estéreo rectificado. Estos puntos
estan dados por

. 0 0
F=[il,=10 0

H[x) = GH[z] v H[Z]|=GH[z]. (B.14)
Los puntos de las imagenes rectificadas cumplen la misma restriccion dada
por la Ec. (B.12). Por lo tanto, sustituyendo los puntos proyectados, se obtiene

H]x'|T G i)« GH[x] = 0. (B.15)

De la Ec. (B.15) se puede observar que la matriz fundamental F' del sistema y
la matriz fundamental F' de un sistema rectificado estan relacionadas como

F=G"FG. (B.16)

Las homograffas G y G’ son independientes. Cada una de estas matrices contiene

ocho incdgnitas por ser tnicas excepto escala; es decir

Uq Uy Uc

G= vy v v, (B.17)
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y de forma similar para G'.

La matriz G se puede descomponer en dos transformaciones simples para
simplificar el proceso de estimacién. Especificamente, la matriz G se descompone
en

G =G,Gp, (B.18)

donde G, es una transformacién afin y G, es la transformacién proyectiva que
minimiza la distorsién. La transformacién G}, se define como

1 0 O
G,=10 1 0}, (B.19)
Wy wp 1

por lo que podemos escribir G, como

Uy — UeWq Uy — UWp  Ue
G, = GG;1 = | Vg — VoWgq Up — VWp Ve | . (B.20)
0 0 1

De la misma forma definimos las homografias G7, y G,.

Anteriormente, se mencioné que las homografias G y G’ son independientes
para cada imagen. Sin embargo, w y w’ son vectores de correspondencia que
dependen de la direccion z = [u, X,0]7 y su epipolo e en I, tales que

w=l[e]xz y w =Fz. (B.21)

El par resultante w y w’ representan lineas epipolares. Existen varios vec-
tores de direccién z que satisfacen la condicién para la rectificacién de imagen.
Por lo tanto, es necesario encontrar un vector z que minimice la distorsion. Para
esto, se usa el siguiente criterio de minimizacién

Z {wT(pi _pc)r. (B.22)

T
w
=1 b,

Esta sumatoria incluye la transformaciéon que sufre cada pixel en la imagen
original y su respectiva imagen transformada por la homografia correspondiente.
En el proceso de minimizacin, se usa el promedio de los puntos p, = > ., p;
para normalizar las coordenadas pixel. Asimismo, se busca que el vector w
introduzca la minima diferencia entre todos los puntos de la imagen.

La sumatoria (B.22) se puede expresar de forma matricial como

wl PPTw

— B.23
prcpg’w’ ( )

donde P es una matriz 3 x n definida como

P=[p,—p. Po—DP. --- Pn—DP.- (B.24)



B.2. RECTIFICACION 65

Sustituyendo las definiciones de la Ec. (B.21) en la Ec. (B.23) para ambas image-
nes se obtiene

A A
———
2T el PP el 2 2T FT'PPTF 2
T (1T 0 T[T Tl T’ (B.25)
2" lelypepelelxz 2" Fipp.Fz
————
B B’
que podemos reescribir de forma compacta como
TA TA/
zt Az  z' Az (B.26)

2Bz  2TB'z’

donde A, B, A’ y B’ son matrices de 3 x 3 que dependen de los puntos de las
iméagenes. La componente w del vector z es 0, por lo tanto, la informacion ttil
se encontrara en las primeras dos columnas de las matrices A, B, A’ y B’. Esto
permite reducir las matrices a bloques de 2 x 2. Explotando esta caracteristica,
podemos reducir el bloque superior izquierdo de PPT a

ppT =

MN [N2 -1 0 ] , (B.27)

12 0 M? -1

donde N y M son el ancho y alto de la imagen, respectivamente. De forma
similar, para pcpCT tenemos

(B.28)

pm3_1{(N_n2 (N—Uwﬁdq

4 [(N-1)(M—-1) (M —1)?

Usando estos resultados, las matrices 2 x 2 de A, B, A’ y B’ pueden ser obte-
nidos. Dicho lo anterior, solamente el vector de direccién z esta por determinar.
Se divide en términos la suma (B.26) obteniendo dos estimaciones del vector z.
Para cada vector z, se busca el eigenvector con el menor eigenvalor de las matri-
ces simétricas positivas (A y A’). El promedio de los vectores z es el adecuado
para cumplir el criterio de la minimizacién, es decir

z= (51 + 22) /2. (B.29)

[ z1] |l 22|

De esta manera, las homografias G, y G;, estan disponibles.

Con las homografias calculadas, los epipolos se encontraran en el infinito.
Sin embargo, para la rectificacion es necesario asegurar que estén a la direcciéon
i = [1,0,0]7. La transformacién afin se encarga de mantener esa direccién. Para
fines précticos se descompone esta transformacién como

Ga = GSG?”v (B30)

donde G, y G son la transformaciones de similitud y de corte, respectivamente.
La transformacion de similitud realiza una rotacion y traslacion a la imagen para
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que el epipolo se encuentre en la direccién i = [1,0,0]7 alineando a la direccién
v. Esta homografia se define como

Vp — VcWp  VcWq — Vg 0
G, = |Vq — VoW Uy — VW Vel - (B.31)
0 0 1

La matriz de la Ec. (B.31) contiene elementos desconocidos. Unicamente
se ha calculado w para la transformacién proyectiva. Los elementos de v se
eliminan desarrollando la Ec. (B.16), como

VoW — Vhw,  vpwl, — viwy  vew!l, — vl
_ ! ! / / / /
F = |v,wj —vjw,  vpwj, —vpwy  vewp — vy | - (B.32)

Vg — Vhw, Vp — Vlwp Ve — VL,

/!

Usando el dltimo renglén y columna de la matriz, se determina que

Ve = F31 4 vlw,, (B.33)
vp = F3o + vlwy, (B.34)
Ve = F33 + 7}{27 (B35)
vl = Fi3 — vow), (B.36)
vy, = Fog — vowy,. (B.37)
Sustituyendo las Ec. (B.33)-(B.37) a la Ec. (B.31), se obtiene
Fzo —wpF33  wals3 — Fs 0
G, = |F51 —waF33 Fzp —wplsz Fyz 4|, (B.38)
0 0 1
y del mismo modo para G.. tenemos
wyF33 — Fog  Fig —w,F3s 0
G;, = w;F33 — F13 wéFgg — Fgg ’Ué . (B39)

0 0 1

Ambas matrices contienen el elemento v/, que involucra una traslacién relaciona-
da a las imagenes, alineando los puntos de manera horizontal. El valor numérico
de v/, es cero para la minima traslacién para cualquier imagen.

Las transformaciones G, y G, son suficientes para realizar la rectificacién
de imagenes. Sin embargo, la rectificacién usando las dos homografias genera
una distorsion en la parte horizontal de las imagenes. Por otro lado, la transfor-
macién de corte Gy minimiza la distorsion generada por la rectificacién. Esta
transformacién solo afecta los puntos de la coordenada u, tales que

Se Sy 0
Go=10 1 of. (B.40)
0 0 1
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El primer renglén de la transformacion Gy se determina usando dos criterios
que evalian el comportamiento de la transformacion proyectiva de la imagen.
El primer criterio mantiene la perpendicularidad de dos lineas en la imagen (el
cruce de la linea vertical m y la linea horizontal n en el punto central), tales
que

(Gyn)T(Gom) = 0. (B.41)

El segundo criterio conserva la relacién de aspecto de la imagen

(Gsn)T(Gyn)  w?

(Gsm)T(Gsm) I (B42)

Las Ec. (B.41) y (B.42) son polinomios cuadrados en dos dimensiones. Utili-
zando funciones paramétricas y curvas algebraicas se puede encontrar la solucién
que satisface ambos criterios, como

h2a? + wy? W2z, + 0y,

S = Sy = .
hw(xvyu - l'uy'u) ’ hw(xvyu - xuyv)

(B.43)

La parte prima de esta transformacién de corte se calcula de la misma manera.

La combinacién de las transformaciones GGG, y GGG}, rectifican las
imdgenes I e I', respectivamente, con la minima distorsién. En la siguiente
seccién, se comprueba la validez de este método para la rectificacion de imagenes
simulando un sistema estéreo no alineado.

Se realizd una prueba usando las imagenes de un sistema estéreo no alinea-
do que se muestran en la figura B.1. Trece puntos de correspondencia fueron
seleccionados manualmente de la escena. Usando el método de transformacion

lineal directa, ver seccién B.1, se encontré la siguiente matriz fundamental

—0,0011 —0,1031 —0,1004
F=|-0,1129 -0,0222 —0,7153
~0,1005 0,6659 —0,0135

Con la matriz fundamental estimada, es posible encontrar lineas epipolares a
partir de un punto en la imagen. Debido a esta propiedad, se puede validar
que la linea epipolar en direccién z es el vector w de la homografia. Usando
el criterio de minimizacion descrito se encontré el vector w que minimiza la
distorsion al transformar los epipolos hacia el infinito. Por lo tanto, con la Ec.
(B.19) se obtuvieron las siguientes homografias

1 0 0 1 0 0
Gp = 0 1 o v G,=| 0 1 0
—0,1273 1,9614 1 0,1354 1,9940 1

Después, las transformaciones de similitud se calculan usando las Ec. (B.38)
y (B.39). Las matrices resultantes fueron

0,6924 0,1023 0 0,6883 —0,0985 0
G, = |—0,1023 06924 —00135| y G’ = |0,0985 0,6883 0
0 0 1 0 0 1
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Figura B.1: Escena experimental para el método de rectificacién de imagenes.
(a)-(b) Un par de imégenes capturadas en diferentes perspectivas. (¢)-(d) Iméage-
nes rectificadas.

Para la rectificaciéon de imagenes es suficiente usar las homografias y las
matrices de similitud. Sin embargo, la distorsién se puede minimizar con la
transformacion de corte. Esta transformacion trata de mantener la relaciéon de
aspecto y la forma de la imagen. Por consiguiente, usando la Ec. (B.40) se
obtuvieron las siguientes transformaciones

0,3357 —2,9149 0 0,3157 —2,6452 0
Gs=| 0 1 o v GZ=| o0 1 0
0 0 1 0 0 1

Finalmente, se generé una homografia por cada imagen con las combinacio-
nes de las transformaciones GGG, y GGG}, Las homografias resultantes se
validaron calculando las imagenes rectificadas correspondientes como se mues-
tra en la figura B.1. Se puede observar que usando las imagenes rectificadas,
la biisqueda de puntos en la imagen (2D) se reduce a una buisqueda a lo largo
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de un renglén (1D). Ademds, al observar un punto de interés en la imagen I,
se forma una linea recta con el mismo renglén en la imagen I’ que contiene el
punto de correspondencia.

Para la aplicacion de estimacién de posicién y orientacién de un robot mévil,
el método de rectificacién de imagenes estéreo puede se de utilidad para obtener
informacidén tridimensional de la escena. Asi, la posicién y orientacién del robot
en el espacio tridimensional puede estimarse con respecto a puntos de referencias
en la escena. Mientras el robot se desplaza, la cdmara captura una secuencia
de imagenes que pueden considerarse fueron capturadas por un sistema estéreo
cuyas camaras son idénticas, pero en diferentes poses. Como trabajo a futuro,
se propone analizar la implementacién del método de rectificacién de iméagenes
para el problema general de navegacién en el espacio tridimensional.
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Apéndice

Segunda transformada de Hough

Se ha mostrado que las columnas de una matriz homografia corresponden
a las imagenes de puntos especificos en el plano de referencia. Especificamente,
el punto al infinito en la direccién x, el punto al infinito en la direccién y,
y el punto en el origen. En este trabajo de tesis, se analizé la posibilidad de
construir matrices homografia detectando las imagenes de los puntos que forman
sus columnas. La deteccién del punto en el origen no suele ser complicada. Por
otro lado, la detecciéon de puntos al infinito puede llegar a ser dificil.

Un punto al infinito puede detectarse indirectamente como el punto de in-
terseccion de lineas paralelas. Para detectar lineas, podemos usar la primera
transformada de Hough. Y, para detectar puntos de interseccion, podemos usar
la segunda transformada de Hough con las lineas detectadas por la primera
transformada.

La matriz homografia que contiene la posicién y orientacién del robot mévil
terrestre requiere dos puntos al infinito (uno en la direccién x y otro en la di-
reccién y). Podemos usar las lineas de carril para detectar el punto al infinito
en la direccién y; sin embargo, no hay informacién suficiente para detectar el
punto al infinito en la direccién x. En otras aplicaciones de navegacién donde
estén disponibles patrones de guia, como pistas de aterrizaje de drones, la se-
gunda transformada de Hough seria aplicable directamente. En este apéndice, se
describe el funcionamiento de la segunda transformada de Hough para trabajo
futuro en otras aplicaciones de navegacion.

Considere un conjunto de lineas Iy, £ = 1,...,n que intersectan en el punto
p. La segunda transformada de Hough permite encontrar con facilidad el punto
de concurrencia p representando las lineas detectadas en el espacio diamante
[65].

Partiendo de la primera transformada de Hough, al sustituir la Ec. (2.82) en
la Ec. (2.84), se obtiene

d=H[5"T SH[p]) = Ps-rslp]. (C.1)
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Usando las matrices Sy y S_ de la Ec. (2.83) y al sustituir en la Ec. (C.1), se
obtiene

Pp,, Di1=S8"1S ., sipel,
PD27 Dy = S:?S.H, sipe II,
Pps, D3z =S7{S_1, sipe III,
Pp.y Di=S8.{S4, sipe IV,

donde I, II, III, IV son los cuadrantes del plano de la imagen.

Al utilizar el método del espacio diamante surge un problema al manejar los
arreglos de memoria en la computadora. Por un lado, la formacién de la imagen
utiliza un espacio rectangular para recorrer todos los pixeles en filas y columnas.
Por otro lado, el espacio diamante exige la acumulacién de polilineas en puntos
que estan dispuestos en forma diagonal. Por lo tanto, el manejo de memoria, y el
proceso de acumulacién de polilineas en el espacio diamante es ineficiente. Para
acelerar este proceso se realiza una modificaciéon al método con una rotacion
de 7/4 radianes, un escalamiento de v/2/2 y una traslacion de [1/2,1/2]7. El
resultando es

(C.2)

. 11 -1 11
y en coordenadas homogéneas,
1 -1 1
p=H 'TH[d]], dondeT = |1 1 1 (C.4)
o 0 2
Por lo tanto, se obtiene una proyeccién lineal como
P = Pr,[p], donde R; =TD,. (C.5)

La segunda transformada de Hough se utiliza para la deteccién de puntos
de concurrencia, mejor conocidos como wvanishing points en la literatura y se
utilizan para estimar homograffas [60]. A continuacién, se describen los pasos
para la detecciéon de puntos de concurrencia de un patrén cuadro-radial como
se muestra en la figura C.1.

Primero, se detectan los contornos del patrén usando el método de Canny
como se muestra en la figura C.1(b) y C.1(f). Los contornos detectados son
procesados por la primera transformada de Hough para detectar lineas como se
muestra en la figura C.1(c) y C.1(g). Entonces, las lineas detectadas son pro-
cesadas por la segunda transformada de Hough para detectar los tres puntos
de concurrencia requeridos como se muestra en la figura C.1(d) y C.1(h). Fi-
nalmente, los puntos de concurrencia detectados son usados para construir la
matriz homografia asociada al plano de referencia observado y al plano imagen
de la camara.

Como trabajo futuro, se puede emplear la primera y segunda transformada
de Hough para estimacién de posiciéon y orientacién en aplicaciones donde la
escena contiene cuadriculas. Algunos escenarios posibles son ambientes urbanos,
pistas de aterrizaje para drones, lineas de produccién industrial, y guias por



Figura C.1: (a)-(d) y (e)-(h) Par de ejemplos de deteccién de puntos de concu-
rrencia en un patréon cuadro-radial.

deteccién de cédigos de respuesta réapida (QR, por las siglas en inglés: Quick
Response).
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