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Navegación por retroalimentación visual usando
métodos de procesamiento multidimensional

Resumen

Los sistemas de visión son un medio esencial de percepción tanto para los hu-
manos como para los robots autónomos. Estos sistemas permiten la percepción
de colores, reconocimiento de formas, medición de tamaños y distancias, clasi-
ficación de objetos y la interpretación de escenas. No obstante, explotar todo
el potencial de un sistema de visión en una computadora digital para aplicacio-
nes robóticas presenta desaf́ıos significativos. Procesando toda la información
visual de una escena para lograr un reconocimiento y localización robustos de
objetos sigue siendo un problema abierto de gran interés. Las escenas naturales
son datos multidimensionales que deben ser extráıdos utilizando diversos tipos
de sensores. Los sistemas opto-digitales facilitan la creación e interpretación de
datos mediante algoritmos de alto rendimiento. Además, las cámaras digitales
ofrecen ventajas significativas, como un amplio campo de visión, mediciones de
alta resolución, bajo consumo de enerǵıa y costos reducidos. En esta tesis, se pro-
pone un algoritmo de navegación por retroalimentación visual usando métodos
de procesamiento multidimensional. El veh́ıculo terrestre realizará una rutina
dentro de una plataforma digital, y se corregirá su trayectoria usando la informa-
ción visual obtenida por las imágenes capturadas por el sistema. Se presentará
el modelo de pinhole con distorsión radial para determinar los parámetros de
las cámaras con lentes de campo visual amplio. Posteriormente, los puntos de
correspondencia se rastrearán a través de distintos métodos como flujo óptico,
detección de colores, y filtros de correlación. Después, se determinará la pose del
veh́ıculo en el espacio tridimensional. Finalmente, la información tridimensio-
nal obtenida se utilizará para proporcionar retroalimentación a un robot móvil
terrestre.

Palabras clave : Navegación visual, detección de objetos, reconstrucción tri-
dimensional, flujo óptico, filtros de correlación, corrección de distorsión, cámara
pinhole con distorsión radial, calibración de cámara, visión computacional.
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Visual feedback navigation using multidimensio-
nal processing methods

Abstract

The vision system is an important means of perception for both humans
and autonomous robots. Vision systems allow perception of colors, recognition
of shapes, measuring size and distances, classification of objects, and interpre-
tation of scenes. Unfortunately, exploiting the full capability of a vision system
in a digital computer for robot applications is not simple. Processing all the
visual information of a scene for robust object recognition and location is still
an open problem of great interest. Natural scenes are multidimensional data
that need to be extracted using different types of sensors. Opto-digital systems
allow data to be created and interpreted using high-performance algorithms.
Additionally, digital cameras have significant advantages, such as a wide field of
view, high-resolution measurements, low power consumption, and low cost. In
this thesis, a visual feedback navigation algorithm using multidimensional pro-
cessing methods is proposed. A grounded vehicle will perform a routine within
a digital test-bench platform, and the trajectory will be corrected using the vi-
sual information obtained by the algorithms through the images captured by the
visual system. The pinhole model with radial distortion is presented. This mo-
del determines the parameters of cameras with high field-of-view lenses. Next,
point correspondences are tracked using various methods, such as optical flow,
color detection, and correlation filters. Afterward, the location of the vehicle in
three-dimensional space is determined. Finally, the obtained three-dimensional
information is used to provide feedback on a land mobile robot.

Keywords: Visual navigation, object detection, three-dimensional recons-
truction, optical flow, correlation filters, distortion correction, pinhole camera
with radial distortion, camera calibration, computer vision.
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gramas tomados por dos cámaras, respectivamente. (c) Se mues-
tran las posiciones tridimensionales del robot móvil. . . . . . . . 36
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superpuestas. (a) Puntos del patrón de calibración proyectado.
(b) Puntos conocidos en el plano de referencia. (c) Re-proyección
de la imagen de entrada para validar que se ha detectado correc-
tamente el plano de referencia. Observe las lozas del suelo están
alineadas en filas horizontales y verticales del mismo tamaño. . . 40
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gación del robot móvil terrestre en la pista dinámica generada. . 45

B.1. La velocidad u, v forma parte de la ĺınea recta perpendicular al
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Capı́tulo 1
Introducción

La navegación de robots móviles ha emergido como un campo de gran impor-
tancia tanto en el ámbito cient́ıfica y comercial [1–3]. Está rama de la robótica,
se enfoca en dirigir veh́ıculos autónomos de manera eficiente y segura a través
de sus respectivos entornos. Por esta razón, el desarrollo y mejoramiento de los
sistemas de navegación es importante para incrementarla confiabilidad y segu-
ridad en aplicaciones tales como loǵıstica automatizada, y asistencia personal
en entornos domésticos, entre otras.

La navegación autónoma de un veh́ıculo requiere varios sensores para detec-
tar la orientación y posición del veh́ıculo en el espacio, y desplazarse por una
ruta que puede ser predeterminada. Los láseres y sonares han sido los sensores
predominantes para estas aplicaciones, proporcionando datos precisos de pose
y proximidad entre objetos de la escena [4]. No obstante, estos sensores presen-
tan desaf́ıos significativos en términos de costo y eficiencia energética, además,
tiene un alcance de detección limitado que puede comprometer la efectividad de
entornos complejos o no estructurados. Por otro lado, los avances recientes en
visión computacional están marcando grandes logros en la navegación de robots
móviles. Las cámaras modernas, particularmente los sistemas de visión estéreo
y los sistemas de inteligencia artificial, extiende considerablemente las capaci-
dades de visión de los veh́ıculos autónomos. Además, se los sistemas de visión
proporciona información visual abundante que puede ser aprovechada para una
amplia gama de tareas, incluyendo la navegación y el reconocimiento de objetos.

El uso de un sistema de visión para la navegación de robots móviles no solo
reduce los costos asociados, sino que también disminuye el consumo energéti-
co, un factor cŕıtico para la operación prolongada de robots autónomos. Las
técnicas de visión por computadora permiten la integración de algoritmos de
inteligencia artificial y reconocimiento de patrones, los cuales pueden mejorar
significativamente la autonomı́a y la adaptabilidad de los robots móviles en
entornos dinámicos.

Los robots de navegación visual pueden realizar un mapeo y localización
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2 CAPÍTULO 1. INTRODUCCIÓN

simultáneos (SLAM) de forma más efectiva comparado en contra de sensores
tradicionales [5]. Además, la integración de técnicas como inteligencia artificial
permite que los robots móviles interpreten y respondan a su entorno de manera
más natural y eficiente, imitando los aspectos del procesamiento visual humano.

Los sensores tradicionales siguen siendo prevalente en el área de investiga-
ción, sin embargo, la integración de tecnoloǵıas de visión computacional indi-
ca mejoras donde los robots móviles serán capaces de operar de manera más
autónoma y eficiente, incluso en entornos complejos y cambiantes. Esto no solo
mejora la capacidad para desempeñar tareas en distintos escenarios, sino que
también abre nuevas aplicaciones de la robótica, desde la exploración de terrenos
hasta la asistencia en tareas domésticas y urbanas [6–10].

Los sistemas de visión aprovechan máxima capacidad de las cámaras para
capturar datos multidimensionales del entorno, los cuales son cruciales para la
navegación en entornos complejos. Por esto mismo, la implementación de al-
goritmos para procesar los datos y extraer la información aún son desafiantes.
Estos métodos incluyen la detección de objetos, reconocimiento de objetos, la
estimación de la posición y orientación (pose) de la cámara, y el descarte de
información irrelevante o ruidosa. Este problema y manejo de datos se vuelven
intŕınsecamente multidimensionales. Cada imagen capturada no solo representa
una matriz bidimensional de ṕıxeles, sino que también incluye información de
color a través de los canales RGB, coordenadas espaciales de cada pixel, múlti-
ples parámetros de la pose de la cámara, y marcas de tiempo que indican cuándo
se capturó cada imagen.

Además de la complejidad inherente, los sistemas de navegación visual fre-
cuentemente se complementan con sensores auxiliares como giróscopos y ace-
lerómetros. Estos dispositivos ayudan a mejorar la precisión de la estimación de
la pose de la cámara y del robot, proporcionando datos sobre el movimiento y
la orientación que pueden ser dif́ıciles de obtener solo a través de las imágenes.
La integración de estos datos sensoriales múltiples en un marco coherente es
crucial y se realiza a través de técnicas de fusión de datos.

A pesar de los avances en la navegación visual, existen varios desaf́ıos cŕıti-
cos que se puede enfrentar. La complejidad computacional es uno de ellos, el
procesamiento de grandes volúmenes de datos visuales y en tiempo real requiere
algoritmos optimizados y equipo de alto rendimiento. Otro desaf́ıo importante
es la robustez del sistema frente a la pérdida de caracteŕısticas visuales cŕıticas,
que puede ocurrir debido a cambios de iluminación, obstrucciones temporales, o
entornos poco estructurados. Por último, en el caso de emplear varios sensores,
la integración o fusión de datos provenientes de múltiples fuentes es otro desaf́ıo
a superar. Estos aspectos son cruciales para garantizar que los robots móviles
puedan operar de manera eficiente y segura en entornos complejos y dinámicos.
Aunque se han hecho progresos, la capacidad de los robots para navegar en
entornos inciertos con precisión todav́ıa está lejos de ser óptima [11, 12]. Estos
desaf́ıos son detonantes para la investigación cient́ıfica dentro de la comuni-
dad de visión por computadora, y resolverlos es clave para lograr sistemas de
navegación prácticos y efectivos en una amplia variedad de aplicaciones.

Uno de los componentes fundamentales que requiere atención es la estima-
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ción de la pose del veh́ıculo, que es vital para cualquier sistema de navegación
de robots móviles. La pose del veh́ıculo, que incluye posición y orientación, de-
be determinarse con alta precisión para que el sistema de navegación funcione
correctamente. Las inexactitudes en la estimación de la pose originan errores
de navegación que conducen a la incapacidad de realizar las tareas de nave-
gación asignadas e incluso colusiones. Por esta razón, es esencial mejorar las
técnicas de estimación de pose. Esto incluye en desarrollar nuevos algoritmos
que integren de manera más efectiva múltiples sensores, como cámaras, LIDAR,
y sensores inerciales. La fusión de datos de estos diversos sensores, a través de
técnicas como el filtro de Kalman, o el filtro de part́ıculas, puede proporcionar
una estimación más precisa y robusta de la pose del robot.

Por otro lado, la implementación de tecnoloǵıas de aprendizaje automático
y aprendizaje profundo puede ofrecer mejoras significativas en la capacidad de
los sistemas de navegación para adaptarse y responder a entornos no estructu-
rados o desconocidos. Por ejemplo, los modelos de aprendizaje profundo pueden
ser entrenados para identificar patrones complejos y adaptarse a variables del
entorno. Aśı, los modelos de aprendizaje tienen el potencial de mejorar la preci-
sión de la estimación de pose y toma de decisiones en tiempo real. Sin embargo,
el proceso de entrenamiento de los sistemas de aprendizaje requiere grandes
cantidades de imágenes y mucho tiempo de procesamiento. Los sistemas digi-
tales permite procesar datos crudos en modelos o patrones simples que pueden
ser utilizados para diversas aplicaciones, incluyendo la detección y localización
de objetos [13–17]. Por ejemplo, los sistemas de visión permiten detectar la
ubicación bidimensional de un objeto en múltiples imágenes y determinar por
triangulación la posición del objeto y el robot en el espacio. Este proceso es
fundamental para la navegación y manipulación precisa en el espacio [18].

En este trabajo de tesis se propone desarrollar un algoritmo para la navega-
ción de un robot móvil terrestre mediante retroalimentación visual. El enfoque
se centrará en el uso de un modelo de cámara pinhole, que incluye la corrección
de distorsión radial, para representar adecuadamente la geometŕıa y el cam-
po de visión del sistema visual del veh́ıculo. Este modelo es particularmente
útil para estimar y corregir distorsión radial, comúnmente encontrada imágenes
capturadas por cámaras digitales convencionales.

Se utilizarán técnicas de calibración para obtener los parámetros intŕınsecos
y extŕınsecos de la cámara, aśı como su distorsión. Los parámetros intŕınsecos
se relacionan con las caracteŕısticas ópticas de la cámara, como la distancia fo-
cal, tamaño de ṕıxel, distorsión, y el centro óptico, mientras que los parámetros
extŕınsecos describen la posición y orientación de la cámara respecto a un sis-
tema de referencia global. Estos parámetros son la parte fundamental para el
sistema de visión interprete correctamente la información espacial del entorno y
aśı facilitar una navegación precisa y efectiva. El enfoque utilizado fue concebido
para lograr alta precisión en la reconstrucción 3D y aumentar la eficiencia del
sistema de navegación móvil.

En esta tesis se propone un método de navegación basado en retroalimen-
tación visual empleando procesamiento multidimensional. Este trabajo aborda
espećıficamente los retos asociados con la estimación de la posición y orien-
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tación del veh́ıculo y la reconstrucción tridimensional del entorno a partir de
información visual. La implementación del método propuesto utiliza una cáma-
ra previamente calibrado y los puntos de correspondencia entre el plano de la
imagen y el espacio tridimensional son detectados. El método propuesto se ba-
sa en los conceptos fundamentales de formación de imágenes y la adaptación
del modelo pinhole a cámaras con lentes de campo visual amplio (fisheye). Se
incorporaron técnicas detección y seguimiento de puntos para localización y se-
guimiento de caracteŕısticas en la escena, además de triangulación de puntos
para la detección de caracteŕısticas tridimensionales y ubicación espacial. Fi-
nalmente, se optimiza la estimación de la pose de la cámara, permitiendo una
navegación precisa y el trazo de la trayectoria del veh́ıculo.

El método propuesto fue evaluado experimentalmente usando secuencias de
video. Los resultados obtenidos fueron analizados en términos de la precisión en
la estimación de la trayectoria de la cámara. El método propuesto es esencial
para la navegación autónoma y ha demostrado ser un área de interés creciente
debido a su aplicación potencial en diversos campos de la investigación, como la
robótica móvil y la realidad aumentada. En resumen, esta investigación propone
mejorar la precisión y robustecer los sistemas de navegación visual, superando
los desaf́ıos actuales y ampliando su aplicabilidad en prácticas reales. La con-
tribución de esta tesis no solo avanza en el campo académico, sino que también
tiene el potencial de influir significativamente en las aplicaciones industriales y
comerciales, mejorando la autonomı́a y la eficiencia de los sistemas de navega-
ción visual en entornos complejos.

Este documento está organizado de la siguiente forma. En el caṕıtulo 2 se
analizan los principios teóricos para determinar los parámetros de la cáma-
ra pinhole con distorsión radial. Después, el caṕıtulo 3 propone el método de
estimación de pose usando la información tridimensional. Posteriormente, el
caṕıtulo 4 presenta las herramientas configuradas para la validación del algo-
ritmo propuesto. En el caṕıtulo 5 se presentan los resultados obtenidos de este
trabajo de tesis. En el caṕıtulo 6 se presentan las conclusiones del trabajo de
investigación y el trabajo a futuro. Este documento de tesis es complementado
por dos apéndices que facilitan la implementación del algoritmo propuesto. El
apéndice A presenta conceptos para estimar la homograf́ıa usando puntos de
correspondencia. Finalmente, el apéndice B presentan los métodos de detección
utilizados en este trabajo de tesis.

1.1. Objetivos

1.1.1. Objetivo general

El objetivo general de esta tesis es desarrollar un algoritmo para la nave-
gación de un robot móvil terrestre aplicando técnicas ópticas de localización y
reconstrucción visual de la escena usando métodos de procesamiento multidi-
mensional.
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1.1.2. Objetivos espećıficos

Los objetivos espećıficos para el desarrollo de este trabajo de tesis son los
siguientes.

Análisis y evaluación del modelo de cámara pinhole con distorsión radial.

Implementación y calibración de cámaras con lentes de campo de visión
amplio.

Análisis y evaluación de un método de detección de objetos.

Análisis y evaluación de un método triangulación para sistemas con múlti-
ples dispositivos.

Diseño de una plataforma de proyección de escenas para la evaluación de
la navegación de veh́ıculos terrestres.

1.2. Contribuciones

Parte de los resultados derivados de este trabajo de tesis fueron publicados
en dos art́ıculos cient́ıficos y seis memorias de congreso internacional.

Victor H. Diaz-Ramirez, Rigoberto Juarez-Salazar, Juan Zheng, Jose En-
rique Hernandez-Beltran, and Andrés Márquez, “Homography estimation
from a single-point correspondence using template matching and particle
swarm optimization,” Appl. Opt. 61, D63-D74 (2022).
DOI: https://doi.org/10.1364/AO.444847.

Rigoberto Juarez-Salazar, Juan Zheng, and Victor H. Diaz-Ramirez, “Dis-
torted pinhole camera modeling and calibration,” Appl. Opt. 59, 4828-
4834 (2020).
DOI: https://doi.org/10.1364/AO.412159.

Juan Zheng, Rigoberto Juarez-Salazar, y Victor H. Diaz-Ramirez, “Vision-
based pose estimation for robot navigation in an uncontrolled environ-
ment,” Proc. SPIE 12673, Optics and Photonics for Information Proces-
sing XVII (2023).
DOI: https://doi.org/10.1117/12.2677909.

Rigoberto Juarez-Salazar, Sofia Esquivel-Hernandez, Juan Zheng, y Victor
H. Diaz-Ramirez, “Fringe projection profilometry without explicit projec-
tor calibration,” Proc. SPIE 12673, Optics and Photonics for Information
Processing XVII (2023).
DOI: https://doi.org/10.1117/12.2677133.

Juan Zheng, Rigoberto Juarez-Salazar, y Victor H. Diaz-Ramirez, “Dy-
namic scene multi-projector platform for vehicle navigation evaluation,”
Proc. SPIE 12225 Optics and Photonics for Information Processing XVI

https://doi.org/10.1364/AO.444847
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(2022).
DOI: https://doi.org/10.1117/12.2633690.

Rigoberto Juarez-Salazar, Sofia Esquivel-Hernandez, Juan Zheng, y Vic-
tor H. Diaz-Ramirez, “Stereo vision-based 3D pointer for virtual object
interaction,” Proc. SPIE 12225, Optics and Photonics for Information Pro-
cessing XVI (2022).
DOI: https://doi.org/10.1117/12.2633736.

Juan Zheng, Rigoberto Juarez-Salazar, y Victor H. Diaz-Ramirez, “Dis-
torted pinhole model for image warping in lane detection applications,”
Proc. SPIE 11841, Optics and Photonics for Information Processing XV
(2021).
DOI: https://doi.org/10.1117/12.2594934.

Juan Zheng, Rigoberto Juarez-Salazar, y Victor H. Diaz-Ramirez, “Pose
estimation from projective transformations for visual guidance of a whee-
led mobile robot,” Proc. SPIE 11841, Optics and Photonics for Informa-
tion Processing XIV (2020).
DOI: https://doi.org/10.1117/12.2569737.

https://doi.org/10.1117/12.2633690
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Capı́tulo 2
Modelo de cámara opto-digital

2.1. Proceso de formación de imágenes

El proceso de formación de imágenes usando el modelo cámara pinhole es la
configuración más estudiada en la literatura debido a su simplicidad [19,20]. Para
aplicaciones de visión por computadora es suficiente el modelo pinhole debido a
que la distorsión radial en las cámaras modernas son despreciables. No obstante,
cuando se requiere adquirir la información que abarque la mayor parte de la
escena, es necesario utilizar una configuración con lentes de alto campo visual.
Estas lentes generan una distorsión radial fuerte en las imágenes capturadas no
reproducibles con el modelo pinhole, provocando discrepancias en los resultados
estimados. Para evitar los errores de estimación, se debe corregir la distorsión
radial de las imágenes de entrada. Por esto, es fundamental determinar los
parámetros de distorsión la cámara. Usualmente se asume que los parámetros
de distorsión de la cámara son aproximados, independientemente del proceso
de formación de imagen [21–23]. Sin embargo, al analizar los parámetros de la
cámara, se observa que la distorsión radial depende tanto del tamaño del pixel
como de la coordenada del punto principal. Por este motivo, la distorsión radial
se toma en cuenta dentro del proceso de formación de imágenes. Por esta razón,
se propone un modelo matemático para el proceso de formación de imágenes
que extiende el modelo de la cámara pinhole para incluir la distorsión radial.
Este modelo propuesto se divide en tres principios: transformación ŕıgida, trazo
de rayos y muestreo.

2.1.1. Transformación ŕıgida

La transformación ŕıgida describe la posición y orientación de la cámara en
el espacio tridimensional. Esta transformación determina la relación entre las
coordenadas del mundo real (xyz) y las coordenadas de la cámara (uvw), como
se muestra en la figura 2.1. En el sistema de coordenadas global, un punto en el

7
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Figura 2.1: La pose de la cámara y los puntos en el espacio tridimensional son
definidas por el sistema de coordenadas global xyz. Mientras, el trazo de rayos
es descrita por el sistema de coordenadas de la cámara uvw. Por último, el plano
imagen es descrita por su sistema de coordenadas pixel µν.

espacio tridimensional se representa como

p = [px, py, pz]
T . (2.1)

Cuando el punto p es observado por la cámara, la coordenada local que re-
presenta el mismo punto se expresa como un vector b = [bu, bv, bw]T dado
por

b = RT (p− t), (2.2)

donde R es una matriz de rotación y t es un vector de traslación. Ambos paráme-
tros, rotación y traslación, especifican la pose de la cámara. La ecuación (2.2)
se puede expresar de manera más conveniente utilizando el operador de coorde-
nadas homogéneas H como

b = LH[p], (2.3)

donde

L = [RT , −RT t] (2.4)

es conocido en la literatura como la matriz de los parámetros extŕınsecos de la
cámara.
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Figura 2.2: Superficie del plano imagen producida por la función g(d) que re-
produce distorsión radial de tipo (a) barril, y (b) coj́ın. Cuando la distorsión
radial de la cámara es nula, la superficie es plana, como se ilustra con el plano
amarillo en la figura.

2.1.2. Trazo de rayos

El trazo de rayos es una descripción abstracta para representar los rayos de
luz que viajan desde la escena, cruzan el pinhole de la cámara, y alcanzan el
plano imagen. Para realizar esta transformación, es conveniente definir el rayo
de luz como aquella ĺınea recta que pasa por el punto b y el origen del sistema
de referencia de la cámara; esto es,

` = λb. (2.5)

Por lo tanto, el punto b es detectado como un punto d = [dv, dv] en la imagen
que es la intersección de la función g(d), que representa la imagen, y la ĺınea `.
Es decir, [

d
g(d)

]
= λb. (2.6)

La distorsión radial es determinada por la distancia del punto d desde el punto
principal. Dado este razonamiento, se puede modelar la superficie como un po-
linomio en potencias de la norma Euclidiana ‖d‖. Por lo tanto, la superficie de
la imagen es representada como

g(d) = f + δ2‖d‖2 + δ3‖d‖3 + · · ·+ δω‖d‖ω, (2.7)

donde δk, k = 1, 2, . . . , w son los parámetros de distorsión. La figura 2.2 illustra
dos tipos de superficie g(d) que generan la distorsión radial barril y coj́ın, que
se encuentra t́ıpicamente en la literatura.
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Figura 2.3: (a) Arreglo de ṕıxeles fotosensibles donde su forma está dada por el
ángulo de oblicuidad ξ. (b) Representación de puntos en coordenadas f́ısicas a
coordenadas ṕıxel.

2.1.3. Muestreo

El muestreo es el proceso de capturar la imagen proyectada en el plano de
la cámara, convirtiendo la información continua de la escena en un conjunto de
datos discretos (pixeles). El sensor de la cámara contiene un arreglo de ṕıxeles
fotosensibles donde las imágenes son formadas a partir de la información ge-
nerada en la superficie por el trazo de rayos. De este modo, los puntos d en
coordenadas uv son transformadas a coordenadas pixel µν, como se muestra en
la figura 2.3. Considerando que el sensor de la cámara tiene pixeles de tamaño
σµ×σν y un ángulo de oblicuidad ξ, las coordenadas del punto principal (du, dv)
se puede transformar a su respectivo coordenada ṕıxel (dµ, dν) como

dµ =
du − dv tan ξ

σµ
, y dν =

dv sec ξ

σν
. (2.8)

Esta transformación se puede generalizar para cualquier punto de observación.
Por lo tanto, si τ = [τµ, τν ]T son las coordenadas pixel del punto principal.
Entonces, la coordenada pixel s de un punto imagen d es dada por

H[s] = SH[d], (2.9)

donde S es la matriz de muestreo definida como

S =

1/σµ −(tan ξ)/σµ τµ
0 (sec ξ)/σν τν
0 0 1

 . (2.10)

Una vez definida la matriz de muestreo, el proceso del trazo de rayos y el
muestreo se puede simplificar como

H[s] = KH[b], (2.11)
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donde K es la matriz de los parámetros intŕınsecos de la cámara. La matriz K
es definida como

K = SΞf =

k11 k12 k13

0 k22 k23

0 0 1

 , (2.12)

donde

Ξf =

[
fI2 02

0T2 1

]
, (2.13)

es la matriz diagonal de escala, f es la distancia focal, I2 es la matriz identidad
de tamaño 2×2, y 02 es un vector de ceros de tamaño 2×1. Con estos conceptos
en mente, se procede a examinar el modelo de cámara pinhole con distorsión
radial.

2.2. Modelo pinhole con distorsión radial

Para el modelo de la cámara pinhole con distorsión radial, la matriz K de
parámetros intŕınsecos es usada para expresar la re-proyección de un punto en
su coordenada pixel al plano superficie. Substituyendo la ecuación (2.6) en la
(2.11), se obtiene

d/f = H−1[K−1H[s]]. (2.14)

Considerando la estructura particular de la matriz de parámetros intŕınsecos K
(matŕız triangular superior), su inversa tiene la forma

K−1 =

[
A

H[02]T

]
, (2.15)

donde

A =

[
a11 a12 a13

0 a22 a23

]
. (2.16)

Por lo tanto, la dirección del rayo de luz detectado en el pixel s se puede escribir
usando las ecuaciones (2.6) y (2.7) como[

d
f + δ2‖d‖2 + δ3‖d‖3 + · · ·+ δω‖d‖ω

]
= fΛ(s, A, δ′) (2.17)

donde

Λ(s, A, δ′) =

[
AH[s]

1 + δ′2‖AH[s]‖2 + δ′3‖AH[s]‖3 + · · ·+ δ′ω‖AH[s]‖ω
]
, (2.18)

y δ′ es un vector que contiene los parámetros de distorsión escaladas dadas como

δ′ =


δ′2
δ′3
...
δ′ω

 =


δ2f
δ3f

2

...
δωf

(ω−1)

 . (2.19)
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Si los parámetros intŕınsecos, extŕınsecos y distorsión de la cámara están
disponibles, entonces se puede calcular imágenes libres de distorsión radial utili-
zando las ecuaciones (2.3) y (2.17). Una vez comprendido el proceso de formación
de imágenes, se busca determinar los puntos tridimensionales de la escena. En
este contexto, se presentará un método de triangulación, el cual constituye un
enfoque inverso, permitiendo la reconstrucción de la geometŕıa tridimensional a
partir de múltiples perspectivas.

2.3. Estimación de puntos tridimensionales

Para estimar puntos en el espacio tridimensional, se utiliza el principio cono-
cido como triangulación. La triangulación determina la ubicación de un punto
en el espacio cuando éste es observado simultáneamente desde múltiples pers-
pectivas. En particular, un sistema cámara-proyector permite detectar puntos
en el espacio desde la perspectiva de la cámara y del proyector. De esta forma,
es posible aplicar el principio de triangulación y determinar la ubicación de pun-
tos del espacio tridimensional. Las direcciones de observación son determinadas
por cada dispositivo mediante el modelo pinhole. Por ejemplo, un punto p en el
espacio 3D es detectado en el plano imagen como un punto s como

s = H−1[CH[p]], (2.20)

donde H es el operador de coordenadas homogéneas, y C = K[RT ,−RT t] es la
matriz que representa la cámara o proyector, e incluye los parámetros intŕınse-
cos, K, la orientación dada por una matriz de rotación, R, y la posición dada
por un vector de traslación, t. Aplicando el operador inverso de las coordenadas
homogéneas en la ecuación (2.20), se obtiene

λH[s] = K[RTp, −RT t], (2.21)

donde λ es un escalar diferente de cero. Entonces, el punto p puede ser calculado
como

p = t+ λRK−1H[s]︸ ︷︷ ︸
d

, (2.22)

donde d = λRK−1H[s] es la dirección en la que el punto p fue observado, y
λ es una incógnita escalar. Por lo tanto, si el punto p es observado por dos
dispositivos, se obtienen un sistema de ecuaciones de la forma

p1 = t1 + λ1d1,

p2 = t2 + λ2d2.
(2.23)

Como el el vector p representa al mismo punto observado por los dos dispositi-
vos, entonces las ecuaciones anteriores se pueden igualar como

t1 + λ1d1 = t2 + λ2d2, (2.24)
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Despejando las variables incógnitas, la ecuación (2.24) es reescrita como

λ1d1 − λ2d2 = t2 − t1, (2.25)

o en su forma matricial como

[d1, −d2]︸ ︷︷ ︸
A

[
λ1

λ2

]
︸ ︷︷ ︸

Λ

= t2 − t1︸ ︷︷ ︸
T

, (2.26)

donde los constantes λ1 y λ2 son estimadas usando el método de mı́nimos cua-
drados (o Λ = (ATA)−1ATT ). Con las constantes estimadas, se utilizan la
ecuación (2.23) para determinar el punto observador p mediante

p =
1

2
(p1 + p2). (2.27)

Cabe señalar que la triangulación de puntos tridimensionales no se limita
únicamente a un sistema cámara-proyector, sino que puede adaptarse a sistemas
con múltiples cámaras y proyectores. En este enfoque, se consideran los puntos
de correspondencia entre imágenes para determinar las coordenadas tridimen-
sionales, lo que permite una mayor flexibilidad y precisión en la reconstrucción
tridimensional. En la siguiente sección se presentarán resultados preliminares
del procesamiento de una secuencia de v́ıdeo capturada por una cámara con
una lente fisheye, utilizando el modelo de cámara pinhole con distorsión radial
analizado.

2.4. Validación del modelo de cámara pinhole
con distorsión radial

Se llevaron a cabo tres experimentos distintos para validar el modelo pro-
puesto para la cámara pinhole con distorsión radial. En el primer experimento,
se calibró una cámara para obtener sus parámetros intŕınsecos, extŕınsecos, y
distorsión. En el segundo experimento, se determinó la posición de los objetos en
la imagen utilizando los parámetros obtenidos de la cámara para corregir la dis-
torsión inicial. En el tercer experimento, se determinó la posición tridimensional
de un veh́ıculo terrestre en la escena utilizando el método de triangulación.

2.4.1. Calibración de cámara con distorsión radial

En este experimento se empleó un tablero de ajedrez de 7 × 10 cuadros,
donde el lado de cada cuadro med́ıa 23,7 mm. Este patrón de calibrción facilitó
la detección de los puntos de correspondencia (ρ, s) necesarios para llevar a ca-
bo la calibración de la cámara [24]. Se adquirieron 52 imágenes utilizando una
cámara fisheye, como se muestra en la figura 2.4, las cuales fueron procesadas
para determinar sus respectivas homograf́ıas. Estas homograf́ıas resultan funda-
mentales para obtener la calibración inicial mediante la aplicación del modelo
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Figura 2.4: Imágenes de entrada (20 de 52) para detectar los puntos si,j del
patrón de calibración.

de la cámara pinhole [20]. Los resultados de esta calibración se utilizan como
entrada para la calibración del modelo de cámara pinhole con distorsión radial,
utilizando el método de Gauss-Newton formulado por mı́nimos cuadrados [24].
Los parámetros intŕınsecos, extŕınsecos y de distorsión obtenidos fueron:

Para verificar la capacidad de eliminar la distorsión radial en imágenes, se
usaron los parámetros obtenidos en el proceso de calibración para procesar una
secuencia de v́ıdeo, como se ilustra en las figuras 2.5(a)-(d). Mediante el estudio
del proceso de formación de imágenes, se corrigió la distorsión radial, como se
muestra en las figuras 2.5(e)-(h).
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Figura 2.5: (a)-(d) Imágenes de entrada capturadas con una cámara fisheye.
(e)-(h) Imágenes sin distorsión radial obtenidas usando el modelo de cámara
pinhole con distorsión radial. Las imágenes sin distorsión permiten simplificar
el proceso de detección de ĺıneas de carril usando ĺıneas rectas.

2.4.2. Detección de objetos

Adicionalmente, se empleó la secuencia de v́ıdeo obtenida con la cámara
fisheye para detectar objetos en movimiento mediante el uso del flujo óptico,
como se muestra en las figuras 2.6(a)-(d). Posteriormente, se generaron másca-
ras binarias identificando las regiones con velocidades elevadas, como se muestra
en las figuras 2.6(e)-(h). Las máscaras obtenidas se usaron para identificar ob-
jetos en movimiento en la escena. Finalmente, se procede a la identificación de
los objetos en función de la cantidad de ṕıxeles concentrados dentro de una ven-
tana predefinida (se consideran al menos 300 ṕıxeles para su clasificación como
objeto), como se muestra en las figuras 2.6(i)-(l).

2.4.3. Estimación de posición tridimensional

En este experimento, se somete al veh́ıculo terrestre a una prueba de nave-
gación simple. En esta primera prueba, el veh́ıculo debe desplazarse en la escena
a lo largo de una ĺınea recta. El sistema de visión captura la escena desde dos
puntos de observación diferentes, como se ilustra en la figura 2.7. Las cámaras se
calibran previamente para obtener los parámetros intŕınsecos, extŕınsecos y de
distorsión. A través de la detección de objetos mediante un filtro de correlación,
se localiza la posición del veh́ıculo. La primera medición se muestra en la figura
2.8 , y se utiliza para determinar su posición tridimensional con el sistema de
visión. Luego, los puntos detectados por cada dispositivo se procesan mediante
el método de triangulación para calcular su posición real en el espacio tridi-
mensional. La trayectoria recorrida por el veh́ıculo se representa en la figura
2.9.
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Figura 2.6: Detección de objetos usando flujo óptico. (a)-(d) Imágenes de entrada
con objetos en movimiento. El flujo óptico se estimó usando el método de Horn-
Schunck. (e)-(h) Máscaras binarias obtenidas al umbralizar los niveles de flujo
óptio estimados. (i)-(l) Objetos en movimiento detectados en la escena.
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Figura 2.7: Escena experimental para el veh́ıculo terrestre.

Figura 2.8: Detecciones del robot móvil terrestre usando filtro de correlación en
ambos dispositivos.
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Figura 2.9: Resultado de la estimación de posición en el espacio tridimensional
mediante el método de la triangulación.

En este caṕıtulo, se presentó un algoritmo para determinar la posición de un
veh́ıculo terrestre en el espacio. Se analizó el sistema de formación de imágenes
de la cámara usando el modelo pinhole con distorsión radial. El modelo empleado
permitió incluir el efecto de distorsión inherente a los lentes ópticos de campo
visual amplio (fisheye). Este enfoque fue útil para remover la distorsión radial
y simplificar considerablemente las tareas de detección de objetos y estimación
de posición.

Se probaron distintos métodos de detección de objetos, incluyendo detección
por color, flujo óptico, y filtros de correlación. Cada método fue evaluado para
determinar ventajas, desventajas, y simplicidad de implementación. Posterior-
mente, la detección del veh́ıculo a partir de cada cámara del sistema permitió
calcular la posición del veh́ıculo en el espacio tridimensional usando triangu-
lación. Es importante destacar que este método no abordó la estimación de
orientación del veh́ıculo. En el próximo caṕıtulo, se presentará un método para
estimar la pose del veh́ıculo utilizando información tridimensional de la escena.



Capı́tulo 3
Estimación de pose usando
información 3D

En este caṕıtulo se aborda un enfoque que permite determinar la pose de la
cámara mediante la teoŕıa de la geometŕıa epipolar. Previo a ello, se revisarán
algunos conceptos fundamentales de la geometŕıa epipolar y principios asociados
considerando el modelo de cámara pinhole [19].

3.1. Geometŕıa epipolar

En una configuración de sistema estéreo, las cámaras pueden ser diferentes
y estar desalineadas. El punto de intersección entre la ĺınea que une los centros
de proyección de las cámaras y el plano imagen se denomina eṕıpolo. Las ĺıneas
que pasan por el eṕıpolo se conocen como ĺıneas epipolares. Si e y e′ son los
eṕıpolos en el plano imagen de la primera y segunda cámara, respectivamente,
entonces las ĺıneas epipolares son

` = H[e]×H[x], (3.1)

`′ = H[e′]×H[x′], (3.2)

donde x y x′ son puntos de correspondencia en la imagen de la primera y
segunda cámara, respectivamente. La relación entre ambos puntos se puede
definir como una transformación proyectiva G entre cámaras, dado que

x′ = H−1[GH[x]]. (3.3)

Al sustituir la ecuación (3.1) en la ecuación (3.3), se obtiene

`′ = H[e′]×GH[x]. (3.4)

19
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El producto vectorial se puede reescribir como una matriz antisimétrica H[e′]×
como

`′ = H[e′]×G︸ ︷︷ ︸
F

H[x], (3.5)

donde F = H[e′]×G es la matriz que relaciona a los planos de la cámara median-
te sus eṕıpolos. La matriz F es conocida como matriz fundamental y permite
relacionar los puntos del plano izquierdo con ĺıneas que intersecta al eṕıpolo del
plano derecho o viceversa. Por lo tanto, se puede simplificar la estimación de e′

al asumir que la pose de la primera cámara se encuentra en el origen. El eṕıpolo
e′ se determina como

e′ = K ′t, (3.6)

donde K ′ es la matriz de los parámetros intŕınsecos de la segunda cámara, y t es
la posición de la segunda cámara respecto al sistema de coordenadas global. La
homograf́ıa del sistema se puede representar en su forma expĺıcita en términos
de dos cámaras como

G = G′G+ = K ′RK−1. (3.7)

Combinando las ecuaciones (3.6) y (3.7) en la definición de la matriz fundamen-
tal, se obtiene

F = [K ′t]×K
′RK−1 = K ′−T [t]×RK

−1. (3.8)

Entonces, si se conocen los parámetros intŕınsecos de las cámaras, obtenidos en
calibraciones previas, la matriz fundamental se puede simplificar como

E = K ′−TFK−1 = [t]×R, (3.9)

donde E es conocida como matriz esencial. La matriz esencial encapsula la
relación geométrica entre dos vistas de una escena tridimensional y se puede
descomponer para recuperar los parámetros extŕınsecos de la segunda cámara
mediante descomposición en valores singulares. Una vez que se han recuperado
los parámetros de la cámara a partir de la matriz esencial, se aplica el método de
triangulación para determinar los puntos tridimensionales correspondientes para
cada par de imágenes. Es importante considerar que los puntos tridimensionales
estimados pueden estar afectadas por ruido introducido por errores de detección
o desfase de puntos. Para mitigar este problema, se busca minimizar el error de
reproyección de puntos tridimensionales para cada pose estimada de la cámara.
Este proceso de refinamiento es conocido en la literatura como ajuste conjunto
(en inglés: bundle adjustment) [25–28]. El ajuste conjunto es abordado en detalle
en la siguiente sección.

3.2. Ajuste conjunto

El ajuste conjunto busca minimizar el error de reproyección de puntos que se
encuentran en distintas vistas. Para esto, se define la re-proyección de un punto
como

µij = H−1[CiH[P j ]], (3.10)
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donde µij indica el j-ésimo punto de correspondencia de la imagen Ii, C
i es la

matriz de la cámara que relaciona la imagen I, y el punto P j de la escena. Una
medición convencional puede no satisfacer esa relación debido a las perturbacio-
nes externas experimentadas durante el proceso de capturar de imágenes. Este
problema produce errores de reproyección, es decir los puntos detectados en la
imagen no coinciden con los puntos estimados a partir de la reproyección. Por
lo tanto, se debe ajustar la matriz de la cámara y los puntos tridimensional de
tal forma que los errores de reproyección se minimicen como

mı́n
∑
ij

d(µ̂ij ,µ
i
j)

2, (3.11)

donde d(·, ·) es la distancia geométrica entre dos puntos en el plano de la imagen.
Existen varias maneras de resolver este problema de minimización, incluyendo
métodos iterativos, mı́nimos cuadrados no lineas, y Levenberg-Marquardt, entre
otras. En la siguiente sección se describen dos métricas de error usadas para
evaluar la metodoloǵıa propuesta en este trabajo de tesis.

3.3. Métricas de error

En este trabajo de tesis, se emplearán dos métricas de error espećıficas para
evaluar los resultados obtenidos del algoritmo de estimación de pose usando
información tridimensional. Estas métricas fueron elegidas debido a su habilidad
para evaluar con precisión tanto la calidad como la precisión de la estimación
de la pose.

3.3.1. Ráız del error cuadrático medio

La ráız del error cuadrático medio (RMSE, por las siglas en inglés: Root
Mean Square Error) es una métrica utilizada para evaluar la precisión de un
modelo de regresión. El método cuantifica las predicciones del modelo contra
los valores reales o experimentales obtenidos del sistema. En este caso, cuando
el valor RMSE es bajo, se considera que la capacidad predicativa del modelo es
buena. La ecuación que caracteriza la ráız del error cuadrático medio es

ERMSE =

√∑n
i=1(yi − ŷi)2

n
, (3.12)

donde n es el número total de observaciones, yi es el valor real o experimental
obtenido en la i-ésima observación en el sistema, y ŷi es el valor predicho por el
modelo. A diferencia de otras métricas de error, el RMSE es sensible a grandes
desviaciones puesto que los errores son ponderados cuadráticamente.

3.3.2. Error absoluto medio

El error absoluto medio (MAE, por las siglas en inglés: Mean Absolute Error)
es una métrica de evaluación de regresión que proporciona una medida simple
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Figura 3.1: Escena experimental para estimar la pose de la cámara sujeta a
desplazamiento lineal.

y fácil de interpretar. Esta métrica está definida como la magnitud promedio
de los errores absolutos entre las predicciones del modelo y los valores reales;
matemáticamente,

EMAE =

∑n
i=1 |yi − ŷi|

n
. (3.13)

A diferencia del RMSE, el MAE no penaliza severamente (cuadráticamente) los
errores, sino de una forma lineal. Por esta razón, esta métrica es menos sensibles
a grandes desviaciones de error. En la siguiente sección, se evaluará el método
de estimación de pose propuesto, evaluando su desempeño en términos de las
métricas RMSE y MAE.

3.4. Validación de estimación de pose

En esta sección, se llevará a cabo la validación del algoritmo propuesto para
la estimación de la pose utilizando tanto datos simulados como experimentales.
La evaluación se realizará mediante la comparación de los resultados obtenidos
con las métricas de error analizadas previamente. Diferentes escenarios serán
considerados para evaluar la eficiencia del método propuesto.

3.4.1. Estimación de movimiento lineal

La primera evaluación se realiza usando una escena con puntos conocidos de-
finidos por patrones de calibración. Se registra la distancia de desplazamiento de
una cámara utilizando la información tridimensional de la escena. Inicialmente,
se estima la pose de una cámara y posteriormente es desplazada linealmente 33
cm a lo largo del eje z. El desplazamiento se efectúo mediante un tripié que per-
mite cambiar la posición de la cámara de manera lineal. La figura 3.1 muestra
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Figura 3.2: Resultado de la triangulación de puntos de los patrones de calibra-
ción en una escena.

la escena inicial con los patrones de calibración usados para detectar los puntos
de interés. Los puntos fueron detectados usando las dimensiones reales de los
patrones y fueron procesados para determinar su posición tridimensional [29].
En la figura 3.2 se presenta el resultado de la triangulación de los puntos detec-
tados. La información tridimensional fue empleada para estimar la pose de la
cámara obteniendo como resultado

R1 =

 0,8786 −0,1442 0,4552
−0,0646 −0,9804 −0,1859

0,4731 0,1339 −0,8708

 , t1 =

−375,4
36,1

1322

 . (3.14)

Posteriormente, la cámara se desplazó linealmente con ayuda del tripié y se
capturó una segunda imágen, como se muestra en la figura 3.3. De la misma
manera, los puntos de los patrones de calibración fueron detectados y procesados
para estimar la posición tridimensional de la cámara, obteniendo

R2 =

0,8773 −0,0953 0,4704
0,0109 −0,9759 −0,2181
0,4798 0,1964 −0,8551

 , t2 =

−561,4
48,5

1654,8

 . (3.15)

Las orientaciones obtenidas son muy similares debido a que no se realizaron
cambios de ángulo visual en la cámara. Por otro lado, las posiciones t1 y t2
exhiben correctamente el cambio de posición de la cámara de acuerdo con el
desplazamiento realizado a lo largo del eje z. El desplazamiento estimado entre
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Figura 3.3: Escena capturada con un desplazamiento a lo largo del eje z para
estimar la pose de la cámara y su distancia de traslación.

la posición inicial y final de la cámara se calculó como

d = t2 − t1 =

 186,0
−12,4
−332,8

mm. (3.16)

Observe que la diferencia a lo largo del eje z, (−332,8 mm), es consistente con
el desplazamiento de 33 cm introducido usando el tripié de la cámara (error de
2,8 mm). Estos resultados muestran una aproximación suficiente para emplear
el método de estimación de pose propuesto en tareas de navegación de un robot
móvil terrestre.

3.4.2. Reconstrucción tridimensional

En este experimento, se realizó una reconstrucción tridimensional proyecti-
va a través de una secuencia de imágenes capturada por una cámara calibrada.
Primero, se detecta los puntos caracteŕısticos de la escena usando métodos como
Caracteŕısticas Robustas Aceleradas (SURF), Transformación de Caracteŕısti-
cas Invariante a Escala (SIFT), Puntos Claves Robusto-Binarios Invariante a
Escala (BRISK), entre otros [30–33]. Las caracteŕısticas sirven para determinar
la correspondencia de puntos entre imágenes como se muestra en la figura 3.4.
La correspondencia de puntos obtenida fue utilizada para estimar la matriz fun-
damental y extraer la pose de la cámara. La pose inicial estimada fue utilizada
para la triangulación de los puntos caracteŕısticos. En la figura 3.5, se muestra
la trayectoria de la cámara y el resultado de la escena construida. Finalmente,
se realiza un post-procesamiento para minimizar el error de re-proyección de los
puntos estimados usando el ajuste conjunto. Adicionalmente, se calcula el valor
de intensidad del pixel de los puntos obteniendo como resultado la figura 3.6.
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Figura 3.4: Imagen izquierda y derecha capturadas con una cámara en posición
inicial y final. Las ĺıneas conectan los puntos caracteŕısticos detectados.

Figura 3.5: Escena reconstruida mediante una secuencia de imágenes capturadas
por una cámara.
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Figura 3.6: Resultado obtenido mediante ajuste conjunto en la reconstrucción
tridimensional.

3.4.3. Evaluación de error de estimación de pose

En esta sección se presentan los resultados de estimación de pose obtenidos
procesado la secuencia de video capturada en dos pruebas. En ambas pruebas
la cámara realiza un recorrido dentro de la escena. En los dos experimentos se
emplean cámaras calibradas; es decir, se conocen las matrices de parámetros
intŕınsecos. Las imágenes de cada video son procesadas para detectar puntos
caracteŕısticos y estimar la pose de la cámara.

En la primera prueba, la cámara realiza una trayectoria simple, que consistió
en una traslación a lo largo del eje horizontal. El propósito de este experimen-
to fue verificar el funcionamiento y rendimiento del algoritmo propuesto. En
la segunda prueba, se usaron las imágenes de la base de datos New Tsukaba,
debido a que proporciona la trayectoria exacta realizada por la cámara duran-
te su nagevación dentro de la escena [34, 35]. Esta última prueba fue útil para
disponer la trayectoria de referencia y aśı evaluar el rendimiento del algoritmo
de estimación de pose. A continuación, se describe el algoritmo para estimar la
pose de la cámara usando la información tridimensional.

En la primera etapa del experimento, se inicializa el sistema asignando la
pose inicial de la cámara en la primera imagen. La segunda pose de la cámara se
calculada usando la segunda imagen y estimando la geometŕıa epipolar [19,20].
Para esto, fue necesario detectar los puntos caracteŕısticos de ambas imágenes
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Figura 3.7: Escenas de prueba usadas para estimar la pose de la cámara. (a)
Primera y última imagen de la secuencia de una trayectoria simple. (b) Primera
y última imagen de la secuencia de una trayectoria conocida usando la base de
datos New Tsukaba.
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Figura 3.8: Resultados obtenidos mediante la estimación de pose usando la infor-
mación tridimensional y estimación de pose usando consenso de muestra alea-
toria (Random Sample Consensus o RANSAC, por sus siglas en inglés). La
ĺınea verde corresponde a la trayectoria estimada y la ĺınea azul corresponde la
trayectoria de referencia.

usando el método de Caracteŕısticas Robustas Aceleradas (SURF, por las siglas
en inglés: Speeded-Up Robust Features), aunque otros métodos también pueden
ser usados [30–33]. Posteriormente, se determinan los puntos de correspondencia,
por medio de algoritmos de comparación y se calcula la matriz esencial quien
contiene la segunda pose de la cámara [36].

En la segunda etapa del experimento, se captura la siguiente imagen de
la secuencia de video y se obtienen nuevos puntos caracteŕısticos. Los puntos
nuevos son comparados con los puntos caracteŕısticos de la imagen previa en
la secuencia de video para determinar correspondencias. Como resultado, se
obtiene un nuevo par estéreo con una nueva geometŕıa epipolar, que permite
estimar la nueva pose de la cámara. Adicionalmente, se determinan los puntos
3D obteniendo una nube de puntos 3D y sus correspondientes puntos imagen
(2D) en la cámara para la pose actual.

En la tercer etapa del experimento, se eliminan puntos de observación que
tengan un error de reproyección mayor que un umbral prefijado. Después, se
calcula la pose de la cámara mediante el método propuesto usando la informa-
ción tridimensional obtenida. Las etapas dos y tres se repiten hasta alcanzar la
última imagen de la secuencia de video del experimento.

Por último, se refinó el ajuste minimizando el error de reproyección y pose
de cada vista observada [25–28]. Los resultados de cada experimento se puede
observar en las figuras 3.8 y 3.9. En la figura 3.8 se observa una trayectoria
simple que permitió verificar el funcionamiento correcto del método propuesto.
Además, se implementaron métodos alternativos para realizar comparaciones
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Figura 3.9: Distintas trayectorias estimadas fueron evaluadas para determinar la
precisión y robustez de los algoritmos implementados. La ĺınea verde correspon-
de a la trayectoria estimada, la ĺınea azul corresponde la trayectoria aplicando
RANSAC, y la ĺınea roja corresponde a la trayectoria real.

de resultados [37, 38]. En la figura 3.9, se puede observar tres trayectorias. La
primera es la trayectoria estimada marcada con color verde, la segunda es la
trayectoria de comparación marcada con color azul, y la tercera es la trayectoria
real marcada con color rojo. Haciendo uso de las métricas de error descrita en
la Sección 3.3, se obtuvieron los niveles de error mostrados en la Tabla 3.1.

Los resultados obtenidos muestran que el método propuesto no logra altos
niveles de precisión en cuanto a la estimación de posición. Por otro lado, la
precisión en cuanto a la estimación de la orientación es aceptable para tareas de
navegación planteadas en esta tesis. En resumen, el método propuesto es fun-
cional debido a los resultados preliminares obtenidos, aunque se debe trabajar
en mejorar la precisión de las estimaciones de posición.
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Método
Posición

RSME MAE Media STD
Propuesto 11.8942 8.5342 3.4066 11.2154
RANSAC 8.9516 7.1590 3.2805 8.1240

Orientación
Propuesto 1.1070 1.5434 0.2518 1.0742
RANSAC 0.6248 1.0843 0.1400 0.6023

Cuadro 3.1: Errores de estimación de pose de la cámara de la trayectoria cono-
cida.



Capı́tulo 4
Plataformas experimentales

4.1. Sistema multiproyector de escenas dinámi-
cas

Los sistemas de navegación terrestres se están volviendo cada vez más im-
portantes en los últimos años [39–43]. La seguridad del usuario es un factor
primordial en las aplicaciones de navegación. La falla de un sistema de nave-
gación pueden tener consecuencias inaceptables, desde daños materiales hasta
lesiones y pérdidas humanas [44–46]. Por lo tanto, la corrección y efectividad de
los algoritmos son de vital importancia [47].

La validación de algoritmos requiere evaluación exhaustiva bajo una amplia
variedad de posibles escenarios de casos reales para minimizar el riesgo de fallos.
Diferentes estrategias de prueba han mostrado resultados aceptables en la eva-
luación de algoritmos de navegación, tales como pruebas en plataformas f́ısicas,
simuladores, y realidad virtual [48–51]. Sin embargo, estas estrategias no son
prácticas en todos los casos. Las plataformas f́ısicas son costosas y la evaluación
exhaustiva requiere enormes recursos materiales, tiempo, y espacio. Por otro
lado, los simuladores y la realidad virtual tienen un gran número de situaciones
de prueba, pero están desconectados de la operatividad del veh́ıculo f́ısico.

En este trabajo, se propone la construcción de un sistema multiproyector
para la generación de dinámica de escenas. El sistema multiproyector propuesto
permite realizar pruebas de navegación vehicular en una gran cantidad de es-
cenas con bajos costos de producción y de tiempo de preparación. Este sistema
propuesto emplea cuatro proyectores para desplegar dinámicamente diferentes
pistas o escenarios, diseñados para evaluar diferentes aspectos de navegación.

El sistema multiproyector propuesto fragmenta la escena a desplegar y com-
pensa la distorsión generada por el ángulo de proyección de cada proyector.
Esto se realiza considerando al proyector una “cámara inversa” que transforma
de la imagen que se desea desplegar (escena) en una proyección sobre el plano
de referencia (fragmento de imagen distorsionado). Este proceso requiere cono-
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Figura 4.1: Generación dinámica de escenas usando un sistema multiproyector.

cer la posición y orientación entre el plano de referencia y el plano diapositiva
del proyector, lo cual se puede describir matemáticamente mediante una matriz
de homograf́ıa. Existen distintas metodoloǵıas para calcular dicha homograf́ıa.
Por simplicidad, se utilizarán cuatro puntos de correspondencia entre el plano
imagen y el proyector. Sin embargo, posteriormente se puede adaptar para un
número arbitrario de puntos de correspondencia.

4.1.1. Generación de escenas usando multiproyección

La creación de escenas usando multiproyección (también conocido como
imágenes mosaico) es una técnica de procesamiento de imágenes que genera una
única imagen superponiendo múltiples fragmentos de la imagen total [52,53]. En
un sistema multiproyector, los planos diapositiva se superponen para crear una
única imagen de mosaico, como se muestra en la figura 4.1. Además, los proyec-
tores deben pre-distorsionar apropiadamente el fragmento de imagen asociado
para compensar la distorsión que introduce el ángulo de proyección. Para esto,
es necesario determinar la relación entre los planos de diapositivas y el plano de
referencia. En la figura 4.2 se muestra que la homograf́ıa relaciona un solo plano
de diapositivas y el plano de referencia. Con este enfoque, cada plano diapositiva
requiere una homograf́ıa para construir una imagen mosaico coherente. Sin em-
bargo, los planos diapositiva son desconocidos debido a la posición y orientación
de cada proyector del sistema. Sin embargo, es posible estimar las homograf́ıas
necesarias usando los puntos esquina del plano diapositiva y relacionarlos con
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Figura 4.2: Proyector desplegando un segmento de imagen en el plano de refe-
rencia. La relación entre el plano diapositiva y el plano de referencia está dado
por una matriz homograf́ıa G.

los puntos esquina del plano de referencia como se describe a continuación.
Primero, el plano diapositiva se visualiza usando una imagen auxiliar arbi-

traria y establecer una nueva relación con puntos conocidos del plano de referen-
cia. Por ejemplo, la figura 4.3(a) muestra los puntos de selección en la imagen
y su correspondencia es conocida porque el plano de referencia fue establecido
previamente. El método de estimación usado en este trabajo se describe en el
Apéndice A. Una vez que se conoce la homograf́ıa entre el plano diapositiva y
el plano de referencia, se despliega la imagen de interés por re-proyección de
puntos usando la homograf́ıa inversa como

ρ = H−1[G−1H[µ]]. (4.1)

Segundo, la re-proyección de la imagen recupera la posición del plano de diapo-
sitivas en el plano de referencia y se selecciona en sentido contrario a las agujas
del reloj desde la esquina superior derecha, como se muestra en la fig. 4.3(b).
Los puntos seleccionados son esquinas del plano de diapositivas en coordenadas
del plano de referencia y sus puntos de correspondencia son

µ1 =

[
N
1

]
, µ2 =

[
1
1

]
, µ3 =

[
1
M

]
, µ4 =

[
N
M

]
, (4.2)

donde M y N son la altura y el ancho en pixeles del plano diapositiva del
proyector. De esta forma, la homograf́ıa que relaciona el plano de diapositi-
vas y el plano de referencia se puede determinar. Tercero, dado la homograf́ıa
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Figura 4.3: Algoritmo propuesto para mostrar una imagen mosaico coherente en
el plano de diapositivas. (a) Se utiliza una imagen de referencia para determinar
la relación entre los planos. (b) La imagen de referencia se vuelve a proyectar
utilizando la homograf́ıa determinada para encontrar las coordenadas de la dia-
positiva en el plano de referencia. (c) Resultados de la imagen correspondiente
a mostrar en el proyector.

se puede recuperar todas las coordenadas del plano de diapositivas aplicando
la re-proyección usando la ecuación (4.1). Luego, se aplica una interpolación
de imagen dividiendo el plano de referencia que corresponde al plano de dia-
positivas [54]. La figura 4.3(c) muestra la imagen resultante que el proyector
desplegará. Finalmente, el proceso se repetirá para todos los proyectores del
sistema obteniendo una superposición coherente de todos los planos de diaposi-
tiva. En la próxima subsección, se presentan los resultados experimentales para
la plataforma digital de navegación de veh́ıculos.

4.1.2. Validación de formación de imágenes dinámicas

La utilidad del método propuesto se verificó mediante la evaluación de un
algoritmo de control de movimiento simple para el movimiento de un robot con
ruedas. Para este experimento, la pista de prueba se generó utilizaron cuatro pro-
yectores colocados en diferentes posiciones y orientaciones de tal forma que los
planos diapositiva illuminaran el campo de prueba, como se muestra en la figura
4.4(a). Posteriormente, se estimaron las cuatro matrices homograf́ıa asociadas a
cada proyector del sistema usando los puntos esquina de cada plano diapositiva
y el plano de referencia. Después, se usó la inversa de cada homograf́ıa estimada
para generar los fragmentos de imagen pre-distorsionados correspondientes a
cada proyector. Finalmente, los fragmentos de imagen resultantes se enviaron
hacia cada proyector, como se muestra en la figura 4.4(b).

La plataforma multiproyector construida se empleó para evaluar la detección
de la posición del robot móvil, como se muestra en la figura 4.5(a). Se configura-
ron las cámaras para capturar la navegación del veh́ıculo en la pista creada. La
secuencia capturada se procesó para detectar las posiciones del veh́ıculo utili-
zando filtros de correlación [55]. En sistemas opto-digital, la posición detectada
en coordenadas ṕıxel puede usarse para determinar la posición real del objeto
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Figura 4.4: (a) Cuatro proyectores iluminando el campo de prueba. (b) Imagen
mosaico construido por la superposición coherente de los planos diapositiva.

en el espacio tridimensional mediante triangulación. La figura 4.5(b) muestra la
trayectoria hecha por el robot en el espacio tridimensional. De esta forma, los
resultados mostraron que el método propuesto no interfiere con el método de
detección de posición tridimensional para veh́ıculos terrestres robotizados y es
factible para otros algoritmos de navegación de veh́ıculos.

4.2. NVIDIA Jetson Nano

Las pruebas experimentales realizadas en este trabajo se hicieron con un
robot equipado con una tarjeta Jetson Nano como plataforma computacional a
bordo. Esta plataforma computacional se eligió debido a su bajo costo energéti-
co y alto rendimiento computacional, ideal para aplicaciones prototipo. Esta
sección proporciona una gúıa para configurar la tarjeta Jetson Nano de 4GB
utilizando el lenguaje de programación Python 3.6.9 y los marcos de aprendizaje
profundo TensorFlow, PyTorch y Torchvision, junto con los paquetes necesarios
para el controlador PCA9685.

4.2.1. Requisitos preliminares

Los requisitos preliminares para habilitar la tarjeta Jetson Nano son los
siguientes.

Tarjeta microSD (mı́nimo 32GB).

Fuente de alimentación (5V 4A recomendado).

Teclado, ratón y monitor.

Conexión a internet.
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Figura 4.5: (a) y (b) Posiciones detectadas del robot móvil en diferentes fotogra-
mas tomados por dos cámaras, respectivamente. (c) Se muestran las posiciones
tridimensionales del robot móvil.

4.2.2. Instalación de la imagen Jetson Nano

1. Descargar la imagen de JetPack 4.5.2 desde el sitio web oficial de NVIDIA.

2. Usar la herramienta Etcher para cargar la imagen a la tarjeta microSD.

3. Insertar la tarjeta microSD en la Jetson Nano y encender el dispositivo.

4. Seguir las instrucciones en pantalla para completar la configuración inicial
y crear una cuenta de usuario.

4.2.3. Instalación de TensorFlow

La instalación de TensorFlow en la tarjeta Jetson Nano requiere ejecutar
manualmente un proceso debido a las versiones espećıficas de JetPack y Python
que están instaladas. Estos pasos son descritas a continuación.

1. Abrir una terminal y actualizar el sistema.

sudo apt−get update
sudo apt−get upgrade

2. Instalar los paquetes necesarios para el sistema.

sudo apt−get i n s t a l l l i bhd f5 −s e r i a l −dev hdf5−
t o o l s l i bhd f5 −dev z l ib1g −dev z ip l i b jp e g8
−dev l i b l apack −dev l i b b l a s −dev g f o r t r a n
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3. Instalar y actualizar las bibliotecas de Python.

sudo pip3 i n s t a l l −U pip t e s t r e s o u r c e s
s e t u p t o o l s ==49.6.0

sudo pip3 i n s t a l l −U numpy==1.16.1 fu tu r e
==0.18.2 mock==3.0.5 h5py==2.10.0
k e r a s p r e p r o c e s s i n g ==1.1.1
k e r a s a p p l i c a t i o n s ==1.0.8 gast ==0.2.2
f u t u r e s protobuf pybind11

4. Instalar el TensorFlow.

sudo pip3 i n s t a l l −−pre −−extra−index−u r l
https : // deve loper . download . nv id ia . com/
compute/ r e d i s t / jp /v45 t en so r f l ow

4.2.4. Instalación de PyTorch y torchvision

La instalación manual de PyTorch y torchvision se realiza con las siguientes
instrucciones.

1. Abrir una terminal y descargar el PyTorch y torchvision pre-compilada
espećıficamente para la versión de JetPack utilizada.

wget https : // nv id ia . box . com/ shared / s t a t i c /
p57 jwntv436 l f rd78 inwl7 iml6p13 fzh . whl −O
torch −1.10.0− cp36−cp36m−l i nux aarch64 . whl

g i t c l one −−branch v0 . 1 1 . 1 https : // github . com
/ pytorch / v i s i o n t o r c h v i s i o n

2. Instalar las dependencias requeridas para la PyTorch y torchvision.

sudo apt−get i n s t a l l l i bopenb la s −base
l ibopenmpi−dev libomp−dev

sudo apt−get i n s t a l l l i b j p e g −dev z l ib1g −dev
l ibpython3−dev l ibopenb la s −dev l ibavcodec
−dev l ibavformat−dev l i b s w s c a l e −dev

3. Instalar el PyTorch.

pip3 i n s t a l l ’ Cython<3 ’

pip3 i n s t a l l numpy torch −1.10.0− cp36−cp36m−
l i nux aarch64 . whl

4. Instalar el torchvision.
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cd t o r c h v i s i o n

export BUILD VERSION=0.11.1

python3 setup . py i n s t a l l −−user

4.2.5. Instalación del controlador PCA9685

La instalación del controlador PCA9685 es más sencilla, ya que se realiza
con una sola instrucción. Sin embargo, es crucial asegurarse de tener las versio-
nes espećıficas de las bibliotecas de Python para garantizar el funcionamiento
correcto de la tarjeta.

sudo pip3 i n s t a l l −U \
ada f ru i t −c i r cu i tpython −busdev ice ==5.1.2 \
ada f ru i t −c i r cu i tpython −motor==3.3.5 \
ada f ru i t −c i r cu i tpython −pca9685 ==3.4.1 \
ada f ru i t −c i r cu i tpython −r e g i s t e r ==1.9.8 \
ada f ru i t −c i r cu i tpython −s e r v o k i t ==1.3.8 \
Adafruit−Blinka ==6.11.1 \
Adafruit−GPIO==1.0.3 \
Adafruit−MotorHAT==1.4.0 \
Adafruit−PlatformDetect ==3.19.6 \
Adafruit−PureIO==1.1.9 \
Adafruit−SSD1306==1.6.2

Cabe señalar que es muy importante verificar cuidadosamente la instalación
correcta de los paquetes y la versión exacta de cada uno de ellos. Asimismo,
se debe asegurar de instalar los marcos de aprendizaje profundo TensorFlow,
PyTorch y torchvision, y los paquetes necesarios para trabajar con el controlador
PCA9685. La instalación defectuosa, o instalación de versiones incompatibles,
evitará desarrollar y ejecutar aplicaciones avanzadas de alto rendimiento en la
Jetson Nano.
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Resultados experimentales

La evaluación experimental del robot móvil en una prueba de navegación
se realizó usando una pista dinámica generada con un sistema de cuatro pro-
yectores. La homograf́ıa asociada a cada proyector fue estimada previamente
relacionando el plano de referencia y el plano diapositiva de cada proyector. La
figura 5.1(a) muestran los puntos usados para la estimación de homograf́ıas de
un proyector. Estos puntos fueron detectados utilizando un patrón de calibra-
ción desplegado por el dispositivo, asegurando una alta precisión en la corres-
pondencia de puntos. Por otro lado, los puntos del plano de referencia fueron
marcados en las intersecciones de los azulejos del suelo, como se muestra en la
figura 5.1(b). Esta calibración aseguró que la proyección y detección de puntos
en el entorno fueran precisas, estableciendo como resultado la plataforma de
una imagen coherente. Después, se realizan el mismo procedimiento para cada
una de los proyectores empleados. La figura 5.1(c) muestra la re-proyección de
la imagen de entrada de un proyector para verificar que la homograf́ıa asociada
fue estimada correctamente.

Se implementó un sistema de transferencia inalámbrico para enviar a los
proyectores los fragmentos de imagen correspondientes. La figura 5.2 muestra
un ejemplo de dos fragmentos de imagen que deben enviarse a dos proyectores.
Asimismo, la figura 5.3 muestra el resultado de proyectar las imágenes enviadas
a los proyectores. Esta configuración permitió abarcar la mayor parte del campo
de prueba, facilitando el uso de la pista como ruta de navegación para el veh́ıculo
terrestre.

Posteriormente, se capturó un video por medio una red neuronal especializa-
da en la detección de ĺıneas de carril, cŕıtico para la navegación del robot móvil en
tiempo real. La detección precisa de estas ĺıneas permitió al controlador ajustar
los parámetros necesarios para guiar el robot móvil con alta precisión. Debido
a los movimientos del veh́ıculo, el video fue sometido a un pre-procesamiento
para mejorar la estabilidad de la grabación, eliminando la fluctuación o ruido
que pudiera afectar la precisión del algoritmo propuesto.
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Figura 5.1: Etapas de la calibración de un proyector para desplegar imágenes
superpuestas. (a) Puntos del patrón de calibración proyectado. (b) Puntos co-
nocidos en el plano de referencia. (c) Re-proyección de la imagen de entrada
para validar que se ha detectado correctamente el plano de referencia. Observe
las lozas del suelo están alineadas en filas horizontales y verticales del mismo
tamaño.

Figura 5.2: Ambas son imágenes de salida en distintas perspectivas. (a) Es la
imagen o diapositiva que desplegará el proyector, y (b) es la imagen desplegado
hacia el plano de referencia de la escena.
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Figura 5.3: Resultado de calibración de proyectores. (a) Simulación de la plata-
forma calibrada para una configuración de cuatro proyectores. (b) Plataforma
de la escena real usando los parámetros obtenidos para generar imágenes super-
puestas por los sistemas de proyectores configuradas.
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Figura 5.4: Diagrama de flujo del algoritmo propuesto para la estimación de
pose usando la información tridimensional.

El algoritmo propuesto fue utilizado para estimar puntos tridimensionales y
realizar el seguimiento de estos puntos con el fin de determinar la pose del robot
móvil terrestre. Inicialmente, se llevó a cabo una estimación preliminar de los
puntos en la escena. Después, se identificaron y rastrearon los puntos que pod́ıan
ser detectados nuevamente en la escena a través de distintas vistas. Estos pun-
tos de correspondencia permitieron obtener los trazos de rayos necesarios para
realizar la triangulación, utilizando múltiples vistas procesadas. El proceso de
triangulación fue fundamental para obtener una reconstrucción tridimensional
precisa del entorno.

Al finalizar el procesamiento, se optimizaron las poses del veh́ıculo mediante
el método de ajuste conjunto. Este proceso implicó la estimación de las re-
proyecciones de los puntos utilizando todas las vistas capturadas y los puntos
de correspondencia detectados. La reducción de puntos redundantes y el ajuste
preciso de las poses resultaron en una mejora significativa de los resultados,
como se ilustra en la figura 5.5. Esta optimización se realizó utilizando el método
iterativo de Gauss-Newton, que minimiza el error de re-proyección y mejora la
precisión general del sistema. Finalmente, la figura 5.6 muestra las posiciones
estimadas a lo largo de toda la secuencia de v́ıdeo, optimizadas mediante la
detección y el seguimiento de puntos de correspondencia.

Los resultados obtenidos validan la eficacia del algoritmo de estimación de
pose, mostrando que puede lograr una precisión similar a la obtenida con técni-
cas basadas en inteligencia artificial. Sin embargo, a diferencia de los métodos
basados en redes neuronales, que requieren un pre-entrenamiento extenso y cos-
toso en términos computacionales, el algoritmo propuesto no requiere esta fase
de pre-entrenamiento. Esta caracteŕıstica reduce significativamente el tiempo y
los recursos necesarios para implementar el sistema, haciéndolo más accesible y
práctico para diversas aplicaciones.
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La precisión del algoritmo se comparó con varios enfoques de inteligencia
artificial en términos de estimación de pose y seguimiento de caracteŕısticas.
Los resultados indicaron que, aunque los métodos basados en redes neurona-
les pueden ofrecer alta precisión, el algoritmo propuesto logra un rendimiento
comparable sin la necesidad de entrenamiento previo. Esto se debe a su capa-
cidad para procesar directamente la información tridimensional capturada por
las cámaras y optimizar la pose del robot móvil terrestre.

Además, el algoritmo demostró ser robusto frente a variaciones en el entorno
y cambios en las condiciones de iluminación, factores que a menudo afectan
negativamente a los sistemas basados en inteligencia artificial. Esta robustez
se debe en parte al uso de técnicas de procesamiento multidimensional y a la
integración de múltiples vistas para la triangulación, lo que proporciona una
estimación más precisa y confiable de la pose del robot.
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Figura 5.5: Las posiciones estimadas se derivan de puntos tridimensionales obte-
nidos. (a) El veh́ıculo no puede continuar la navegación debido a la insuficiencia
de puntos usados. (b) El veh́ıculo logra completar la trayectoria planificada.
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Figura 5.6: Los puntos en seguimientos y posiciones estimadas por la navegación
del robot móvil terrestre en la pista dinámica generada.
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Capı́tulo 6
Conclusiones

En esta tesis, se propuso un método de estimación de pose basado en in-
formación visual y una plataforma multi-proyector para la generación de pistas
dinámica, útiles para pruebas de navegación. Se presentaron los fundamentos
conceptuales de operación del sistema y se realizaron pruebas experimentales
de operación. Los resultados obtenidos mostraron la factibilidad del método
propuesto para desarrollar estrategias navegación para robots autónomos. Asi-
mismo, el sistema multi-proyector construido mostró gran utilidad para evaluar
otros sistemas de navegación en entornos dinámicos.

Durante el transcurso del presente trabajo de tesis se observó la utilidad de
incluir sensores adicionales como gúıas láser, unidades inerciales, y codificadores
rotativos, para complementar el sistema de visión. Por ejemplo, los sensores láser
permiten conocer la distancia entre el robot y los objetos circundantes para rea-
lizar un seguimiento y evasión de obstáculos, una tarea crucial que complementa
el problema de navegación visual. La evasión de obstáculos ha sido ampliamen-
te documentada como esencial en robótica autónoma, mejorando la seguridad
y la eficiencia del movimiento en entornos dinámicos. Los sistemas inerciales
ayudan ayudan a determinar los cambios bruscos de elevación y mantener el
veh́ıculo en una trayectoria adecuada sobre superficies no planas, estabilizando
la navegación en terrenos irregulares. Además, los codificadores rotativos com-
plementan la estimación de pose utilizando información histórica y temporal del
veh́ıculo en movimiento, mejorando aśı la precisión en la navegación continua y
proporcionando datos cŕıticos para la corrección de trayectoria.

La inclusión de múltiples sensores permite una fusión sensorial más robusta,
que es crucial para la navegación autónoma en entornos complejos. Esta fusión
de sensores mejora la redundancia y la confiabilidad del sistema, permitiendo al
robot definir trayectorias basándose en múltiples fuentes de datos. La fusión de
datos ha sido explorada en diversas aplicaciones robóticas, mostrando cómo la
combinación de diferentes tipos de sensores que puede superar las limitaciones
individuales de cada uno de ellos.
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El marco teórico desarrollando en este trabajo de investigación también tie-
ne aplicaciones en otras disciplinas como ciruǵıa asistida por computadora, in-
genieŕıa inversa, vigilancia, y control de calidad en ĺıneas de producción. Por
ejemplo, la realidad aumentada es una tecnoloǵıa que permite simular escena-
rios cŕıticos que son de alto riesgo de practicar sin tener conocimientos previos.
En navegación aéreas, un estudiante puede realizar múltiples simulaciones antes
de realizar vuelos en condiciones reales. En medicina, los sistemas de simulación
quirúrgica permiten a los médicos practicar procedimientos complejos, minimi-
zando los riesgos asociados a errores durante ciruǵıas reales. La realidad aumen-
tada también se utiliza en la formación de personal en industrias como nuclear
y la petroqúımica, donde los errores pueden tener consecuencias catastróficas.

El método propuesto no solo mejora la precisión de la localización del veh́ıcu-
lo, sino también tiene el potencial de integrarse con sistemas de inteligencia
artificial. La combinación de visión por computadora y aprendizaje profundo
ha demostrado ser efectiva en diversas aplicaciones de navegación autónoma,
ofreciendo soluciones adaptativas que mejoran el rendimiento en tiempo real.
Además, el uso de técnicas de aprendizaje permite incrementar las capacidades
de navegación a través de la evolución del algoritmo que optimiza el rendimiento
en entornos dinámicos y desconocidos.

Los resultados experimentales obtenidos en este trabajo de tesis validaron
la utilidad del método de visión propuesto para tareas de navegación autóno-
ma. Complementar el método con un sistema de aprendizaje automático ofre-
ció una alternativa práctica para la detección de pistas sin necesidad de pre-
entrenamiento, lo que representa una solución prometedora para futuros desa-
rrollos en el campo de la robótica móvil.

En conclusión, este trabajo de investigación abre nuevas oportunidades de
investigación en robótica móvil, visión por computadora y otras áreas relacio-
nadas, como la realidad aumentada y la robótica industrial. La integración de
sensores adicionales y técnicas de aprendizaje automático mejora significativa-
mente la capacidad de los sistemas autónomos para navegar en entornos com-
plejos y dinámicos. La investigación futura podŕıa centrarse en la mejora de los
algoritmos de fusión sensorial y en la implementación de redes neuronales más
avanzadas para optimizar la toma de decisiones en tiempo real, expandiendo aśı
las aplicaciones y la eficiencia de los robots autónomos.



Apéndice A
Estimación de homograf́ıas

Las homograf́ıas son de gran utilidad cuando se emplea una cámara pinhole
y se desea relacionar los puntos del plano de la imagen (cámara) o del plano
de diapositivas (proyector) con puntos de un plano de referencia en el espacio
tridimensional [20]. El sistema de transformación de puntos se puede describir
como

µ = H−1[GH[ρ]], (A.1)

donde µ y ρ son puntos de correspondencia entre el plano de la imagen o diapo-
sitiva y el plano de referencia, respectivamente, G es la matriz de homograf́ıa, y
H[·] es el operador de coordenadas homogéneas [20]. La homograf́ıa G se define
como una matriz de 3× 3 y también puede representarse como

G =

g11 g12 g13

g21 g22 g23

g31 g32 g33

 =

ḡT1ḡT2
ḡT3

 , (A.2)

donde ḡT1 , ḡT2 y ḡT3 son las filas de la matriz G. Usando esta definición, la
ecuación (A.1) puede reescribirse como

µ = H−1

ḡT1ḡT2
ḡT3

H[ρ]

 = H−1

ḡT1H[ρ]
ḡT2H[ρ]
ḡT3H[ρ]

 =
1

ḡT3H[ρ]

[
ḡT1H[ρ]
ḡT2H[ρ]

]
. (A.3)

Usando la ecuación (A.3), se puede escribir un sistema de ecuaciones lineales
como [

g31ρxµx + g32ρyµx + µx
g31ρxµy + g32ρyµy + µy

]
=

[
ḡT1H[ρ]
ḡT2H[ρ]

]
, (A.4)

que se puede reescribir convenientemente colocando las incógnitas en el lado
derecho de la igualdad como[

µx
µy

]
=

[
H[ρ]T ḡ1

H[ρ]T ḡ2

]
−
[
ρxµxg31 + ρyµxg32

ρxµyg31 + ρyµyg32

]
, (A.5)
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o, en forma matricial,

[
H[ρ]T 0T

3 −ρxµx −ρyµx
0T3 H[ρ]T −ρxµy −ρyµy

]
︸ ︷︷ ︸

A


ḡ1

ḡ2

g31

g32


︸ ︷︷ ︸

g

= µ, (A.6)

donde g es el vector de incógnitas, y contiene los elementos de la matriz homo-
graf́ıa. Observe que la ecuación (A.6) corresponde al caso donde hay un punto
de correspondencia (µ,ρ), obteniendo dos ecuaciones. Sin embargo, esto no es
suficiente para determinar el vector g, que contiene ocho incógnitas. Por lo tan-
to, es necesario al menos cuatro puntos de correspondencia para estimar una
matriz de homograf́ıa. Para el caso general, un sistema de ecuaciones matriciales
para n puntos de correspondencia se representa como

A1

A2

A3

...
An


︸ ︷︷ ︸
A

g =


µ1

µ2

µ3
...
µn


︸ ︷︷ ︸
Y

. (A.7)

Este sistema se puede resolver utilizando el método de mı́nimos cuadrados, de
modo que el vector g se puede calcular como

g = (ATA)−1ATY. (A.8)

En este trabajo de tesis, el método de estimación de homograf́ıa descrito
se usó para diversas áreas, incluyendo calibración de cámaras, calibración de
proyectores, y formación de imágenes mosaico para la generación dinámica de
imágenes usando un sistema multi-proyector.



Apéndice B
Detección de objetos

En este trabajo de investigación, la detección de objetos a partir de imágenes
fue una tarea que se desarrolló empleando diferentes métodos. A continuación se
describen cuatro enfoques evaluados durante este trabajo de tesis; en particular,
la detección de objetos empleando flujo óptico, detección por espacios de color,
filtros de correlación, y redes neuronales convolucionales.

B.1. Flujo óptico

El flujo óptico refiere a los campos de velocidad de intensidad que provocan
los objetos en movimiento en una imagen. La importancia del análisis del flujo
óptico se debe a su utilidad en aplicaciones de visión por computadora, pues-
to que permite detectar y obtener el movimiento de los objetos en una escena.
Este método se ha convertido en un ĺınea de investigación importante por su efi-
ciencia y utilidad en aplicaciones como segmentación, estructura tridimensional,
estabilización, y compresión de v́ıdeo, entre otras [56,57].

La estimación clásica del flujo óptico inicia definiendo una imagen E donde
su nivel de intensidad en el punto x, y en el instante de tiempo t, se representa
como

E(x, y, t). (B.1)

Esta intensidad permanece constante en un instante de tiempo t cualesquiera;
es decir,

dE

dt
= 0. (B.2)

De igual manera, un punto en la imagen puede trasladarse a una cierta
distancia en dirección de los ejes en un determinado tiempo, como

E(x, y, t) = E(x+ δx, y + δy, t+ δt), (B.3)
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Figura B.1: La velocidad u, v forma parte de la ĺınea recta perpendicular al
vector de nivel de intensidad Ex, Ey.

que podemos reescribir usando series de Taylor como

E(x, y, t) = E(x, y, t) + δx
∂E

∂x
+ δy

∂E

∂y
+ δt

∂E

∂t
+ ε, (B.4)

donde ε son los términos de orden superior. Después, despreciando los términos
de orden superior, dividiendo por δt y en el ĺımite δt → 0 se obtiene la siguiente
ecuación diferencial

∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t
= 0, (B.5)

o, simplificando la notación, llegamos a lo que se conoce como ecuación lineal
del flujo óptico dada por

Exu+ Eyv + Et = 0, (B.6)

donde u y v son las velocidades del flujo en los ejes x e y, respectivamente.
Utilizando la ecuación de la recta en el espacio u, v, se forma la figura B.1,
donde la velocidad se encuentra dentro de la ĺınea recta y el vector del nivel de
intensidad (Ex, Ey) siempre permanece perpendicular.

En la ecuación (B.6) se tienen dos incógnitas y una sola restricción. Por
lo tanto, la ecuación (B.6) no proporciona información suficiente para poder
calcular el flujo óptico de forma única. El método de Horn-Schunck agrega una
restricción de la variación de suavidad que toma en cuenta todos los ṕıxeles [13].
Usando está restricción global se puede determinar el flujo óptico de cada ṕıxel,
sin embargo, esto puede causar problema al análisis de la detección debido
a que es sensible al ruido. Por otro lado, el método de Lucas-Kanade asume
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una restricción local para determinar el flujo óptico que ofrece una robustez
relativamente alta en ambientes no controlados [14]. Está restricción asume un
movimiento constante de un espacio determinado.

Dado el criterio de mı́nimos cuadrados, la ecuación (B.6) para las velocidades
v = [u, v] en una pequeña vecindad espacial Ω se reescribe como∑

xεΩ

W 2(x)[Exu+ Eyv + Et]
2 = 0, (B.7)

donde W (x) es una función ventana donde el centro de la vecindad tiene un
mayor peso que los que rodean. Desarrollando la ecuación (B.7), se obtiene

[
Ex1

. . . Exn

Ey1 . . . Eyn

]Wx1
. . . 0

...
. . .

...
0 . . . Wxn


2 Ex1

Ey1
...

...
Exn

Eyn

[uv
]

+

[
Ex1 . . . Exn

Ey1 . . . Eyn

]Wx1 . . . 0
...

. . .
...

0 . . . Wxn


2

+
[
Et1 . . . Etn

]
= 0,

(B.8)

y se puede simplificar como

ATW 2Av = ATW 2b, (B.9)

donde

A = [Ex1 + Ey1 , Ex2 + Ey2 , . . . , Exn + Eyn ]T ,

W = diag [W (x1),W (x2), . . . ,W (xn)],

b = −[Et1 , Et2 , . . . , Etn ].

(B.10)

El flujo óptico v se calcula directamente utilizando la pseudoinversa de Moore-
Penrose [58] para encontrar la solución de la ecuación (B.10) como

v = [(ATW 2)T (ATW 2)]−1(ATW 2)TATW 2b. (B.11)

Para validar el método estudiado, se realizó una simulación computacional
para observar el flujo óptico estimado y su robustez cuando las condiciones son
controladas. En esta simulación se generan cuatro ćırculos de diferentes patrones
como objeto de interés. Los objetos de la escena se pueden manipular usando
transformaciones geométrica como traslación y rotación. Cada imagen genera-
da es procesada para determinar el flujo óptico usando una ventana espacial
de 20 × 20. en En la figura B.2, se observan los resultados obtenidos, donde
su pudo verificar que el proceso de estimación de flujo óptico se implementó
correctamente.

En este trabajo se realizó una comparación entre el método de Horn-Schunck
y Lucas-Kanade. Ambos son métodos para determinar el flujo óptico. Por un
lado, el enfoque de Horn-Schunck es global debido a que utiliza el criterio de
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Figura B.2: Simulación para determinar el flujo óptico en una escena con objetos
en movimiento.

Figura B.3: Diferentes visualizaciones del flujo óptico. (a)-(c) Son resultados
obtenidos mediante el método de Lucas-Kanade. Por otro lado, (d)-(f) son re-
sultados obtenidos del método de Horn-Schunck.
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suavidad en toda la imagen. Por otro lado, el método de Lucas-Kanade es un
enfoque local ya que asume que la velocidad es constante solo dentro de una
vecindad espacial. Para este experimento, se utiliza un video para obtener una
secuencia de imágenes que será procesada usando ambos algoritmos. Los resul-
tados del flujo óptico se pueden observar en la figura B.3. Se utilizó el método de
Lucas-Kanade para obtener los resultados de la figura B.3(a)-(c). Como paráme-
tro de entrada al algoritmo se utilizó una vecindad espacial de 15× 15 para 200
caracteŕısticas. Asimismo, la figura B.3(d)-(f) son los resultados obtenidos por
el método de Horn-Schunck usando como parámetro de entrada una ventana
de tamaño 3 × 3 para estimar la suavidad. Dado los resultados obtenidos, se
puede observar que el método local procesa solamente ciertos puntos de interés,
mientras el método global procesa todos los ṕıxeles de la imagen. El método
global implica bastante procesamiento computacional y susceptibilidad al ruido
por resultados adicionales que no sean de interés.

B.2. Espacio de colores

La detección de color mediante el espacio HSV (por sus siglas en inglés
Hue, Saturation, Value – Matiz, Saturación, Valor) es una técnica utilizada en
procesamiento de imágenes y visión por computadora. El espacio de color HSV
se descompone la información en tres componentes descritas a continuación. La

Figura B.4: Detección de colores mediante el uso de máscaras. (a) Imagen de
entrada. (b) Máscara binaria. (c) Imagen de salida. (d)-(f) Máscaras binarias
de los canales del espacio HSV.
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Figura B.5: Detector de objetos mediante la información obtenida por los colo-
res.

matiz representa el tipo de color, y se mide en grados de 0 a 360. Por ejemplo, el
grado 0 representa el color rojo, el grado 120 representa el color verde, y el grado
240 representa el color azul. Por otro lado, la saturación indica la percepción
de la pureza en colorimetŕıa, que varia entre los valores de 0 a 100 %. Un valor
del 0 % agrega una tonalidad de gris, mientras que 100 % es el color más puro.
Por último, el valor es conocido como brillo, tiene valores entre 0 a 100 % donde
el valor mı́nimo equivale a colores oscuros y el valor máximo es el color más
brillante equivalente al blanco.

El proceso de detección de objeto mediante el espacio de colores es lo siguien-
te. Primero, se selecciona un color para generar tres máscaras binarias mediante
un valor constante. Cada máscara pertenece a un componente del espacio HSV.
Después, se realiza una operación lógica AND con las tres máscaras para obte-
ner una máscara binaria en el espacio RGB (por sus siglas en inglés Red, Green,
Blue – Rojo, Verde, Azul). Finalmente, se aplica el filtro binario a la imagen de
entrada para obtener el objeto de interés. En la figura B.4 se puede observar
como ejemplo un experimento para la detección del color amarillo. Finalmen-
te, la posición del objeto se obtiene determinando el centroide de los puntos
detectados como se muestra en la figura B.5.

B.3. Filtros de correlación

El filtro de correlación construido por la mı́nima de la suma del error al
cuadrado (del inglés minimum output sum of squared error MOSSE ) es una
técnica avanzada utilizada en visión por computadora para tareas de rastreo
de objetos [55, 59, 60]. El filtro MOSSE se basa en la optimización de un filtro
de correlación para minimizar el error cuadrático medio entre su salida y una
imagen del objeto deseado. Es decir, el objetivo de este método es determinar
un filtro H que, al correlacionarse con una imagen I, produzca una respuesta G
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Figura B.6: Detección de un robot móvil terrestre usando filtros de correlación.

similar a una función delta centrada en la ubicación del objeto. Por lo tanto, es
necesario minimizar el error del filtro usando múltiples imágenes del objetivos
como

minH

n∑
i

|H · Ii −Gi|2, (B.12)

donde Ii son las imágenes de entrenamiento y Gi es la función delta correspon-
diente. Por lo tanto, se propone generar el filtro de correlación de la siguiente
manera. Primero, se selecciona el objeto de interés en la escena. A continuación,
se genera un filtro mediante el entrenamiento con transformaciones geométricas
del objeto seleccionado, utilizando el criterio de la ecuación (B.12). La imagen
entrante se transforma al espacio de Fourier y se aplica una convolución con
el filtro. Finalmente, se determina la posición del objeto de interés buscando el
pico de intensidad máxima en el resultado de la convolución. En la Figura B.6
se pueden observar los resultados de la detección de un robot móvil utilizando
filtros de correlación.

B.4. Redes neuronales convolucionales

La red neuronal convolucional ha demostrado ser altamente eficaz en diversas
tareas de visión por computadora, incluyendo la detección de objetos [61–63].
Las redes neuronales profundas abordan el problema de la degradación, en el
cual un aumento en el número de capas puede resultar en un mayor error y una
disminución en la precisión del entrenamiento. Para mitigar este problema, se
emplean bloques residuales que permiten el entrenamiento de redes profundas
sin experimentar inconvenientes como el desvanecimiento del gradiente.

Para la detección de objetos, se utiliza la arquitectura Redes Residuales 18
(ResNet-18), que consta de 18 capas organizadas en un conjunto de bloques
residuales, como se muestra en la figura B.7. Cada bloque incluye dos capas
convolucionales seguidas por una conexión de atajo que omite estas dos capas,
como se muestra en la figura B.8. Esta conexión facilita la propagación directa
del gradiente a través de la red, permitiendo el entrenamiento eficiente de las
capas más profundas.

Entre las ventajas de utilizar esta arquitectura se destacan su facilidad de
implementación, adecuación para aplicaciones en tiempo real y dispositivos con
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Figura B.7: La arquitectura de la red residual de 18 capas está organizada en
un conjunto de bloques residuales, los cuales permiten omitir dos capas convo-
lucionales. La última capa es crucial, ya que finaliza el proceso de aprendizaje
y produce los resultados.

Figura B.8: Bloque de aprendizaje residual.
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recursos limitados. La profundidad moderada de una ResNet-18 le permite ge-
neralizar bien en tareas de visión por computadora, manteniendo un equilibrio
entre precisión y eficiencia. Debido a los bloques residuales, la ResNet-18 puede
ser entrenada de manera eficiente, evitando problemas comunes en redes pro-
fundas, como el desvanecimiento del gradiente.
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