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Navegacion por retroalimentacion visual usando
métodos de procesamiento multidimensional

Resumen

Los sistemas de visién son un medio esencial de percepcién tanto para los hu-
manos como para los robots auténomos. Estos sistemas permiten la percepciéon
de colores, reconocimiento de formas, medicién de tamanos y distancias, clasi-
ficacion de objetos y la interpretacion de escenas. No obstante, explotar todo
el potencial de un sistema de visiéon en una computadora digital para aplicacio-
nes robdticas presenta desafios significativos. Procesando toda la informacién
visual de una escena para lograr un reconocimiento y localizaciéon robustos de
objetos sigue siendo un problema abierto de gran interés. Las escenas naturales
son datos multidimensionales que deben ser extraidos utilizando diversos tipos
de sensores. Los sistemas opto-digitales facilitan la creacion e interpretacién de
datos mediante algoritmos de alto rendimiento. Ademads, las camaras digitales
ofrecen ventajas significativas, como un amplio campo de visién, mediciones de
alta resolucién, bajo consumo de energia y costos reducidos. En esta tesis, se pro-
pone un algoritmo de navegacién por retroalimentacién visual usando métodos
de procesamiento multidimensional. El vehiculo terrestre realizard una rutina
dentro de una plataforma digital, y se corregira su trayectoria usando la informa-
cién visual obtenida por las imagenes capturadas por el sistema. Se presentard
el modelo de pinhole con distorsiéon radial para determinar los parametros de
las cAmaras con lentes de campo visual amplio. Posteriormente, los puntos de
correspondencia se rastrearan a través de distintos métodos como flujo éptico,
deteccién de colores, y filtros de correlacién. Después, se determinard la pose del
vehiculo en el espacio tridimensional. Finalmente, la informacién tridimensio-
nal obtenida se utilizara para proporcionar retroalimentacién a un robot mévil
terrestre.

Palabras clave: Navegacion visual, deteccion de objetos, reconstruccioén tri-
dimensional, flujo 6ptico, filtros de correlacién, correccion de distorsién, cAmara
pinhole con distorsién radial, calibracién de cdmara, vision computacional.
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Visual feedback navigation using multidimensio-
nal processing methods

Abstract

The vision system is an important means of perception for both humans
and autonomous robots. Vision systems allow perception of colors, recognition
of shapes, measuring size and distances, classification of objects, and interpre-
tation of scenes. Unfortunately, exploiting the full capability of a vision system
in a digital computer for robot applications is not simple. Processing all the
visual information of a scene for robust object recognition and location is still
an open problem of great interest. Natural scenes are multidimensional data
that need to be extracted using different types of sensors. Opto-digital systems
allow data to be created and interpreted using high-performance algorithms.
Additionally, digital cameras have significant advantages, such as a wide field of
view, high-resolution measurements, low power consumption, and low cost. In
this thesis, a visual feedback navigation algorithm using multidimensional pro-
cessing methods is proposed. A grounded vehicle will perform a routine within
a digital test-bench platform, and the trajectory will be corrected using the vi-
sual information obtained by the algorithms through the images captured by the
visual system. The pinhole model with radial distortion is presented. This mo-
del determines the parameters of cameras with high field-of-view lenses. Next,
point correspondences are tracked using various methods, such as optical flow,
color detection, and correlation filters. Afterward, the location of the vehicle in
three-dimensional space is determined. Finally, the obtained three-dimensional
information is used to provide feedback on a land mobile robot.

Keywords: Visual navigation, object detection, three-dimensional recons-
truction, optical flow, correlation filters, distortion correction, pinhole camera
with radial distortion, camera calibration, computer vision.






Indice oeneral

1. Introduccién

1.1. Objetivos . . . . . . . .
1.1.1. Objetivo general . . . . .. ... ... ... ... ..
1.1.2. Objetivos especificos . . . . .. . ... ... ... ...

1.2. Contribuciones . . . . . .. .. ... oL

2. Modelo de camara opto-digital

2.1. Proceso de formacién de imégenes . . . . . . ... ... .. ..
2.1.1. Transformacién rigida . . . . . . ... ... ... ...
2.1.2. Trazoderayos . . . . . . ... e
2.1.3. Muestreo . . . . . ..

2.2. Modelo pinhole con distorsién radial . . . . . ... . ... ...

2.3. Estimacién de puntos tridimensionales . . . . . ... ... ...

2.4. Validacion del modelo de camara pinhole con distorsién radial . .
2.4.1. Calibracién de camara con distorsién radial . . . . . . .
2.4.2. Deteccién de objetos . . . . .. ... L
2.4.3. Estimacién de posicion tridimensional . . . . . . . . ..

3. Estimacién de pose usando informaciéon 3D

3.1. Geometria epipolar . . . . .. ... oL
3.2. Ajusteconjunto . . . . ... Lo
3.3. Métricasdeerror . . . . . . . ...
3.3.1. Raiz del error cuadratico medio . . . . . ... ... ...
3.3.2. Error absolutomedio. . . . . .. ... ... ... ....
3.4. Validacién de estimacién de pose . . . . . . . . ... ... ..
3.4.1. Estimacion de movimiento lineal . . . . ... ... ...
3.4.2. Reconstruccién tridimensional . . . . . . .. .. ... ..
3.4.3. Evaluacién de error de estimacién de pose . . . . . . . .

A%

T Ot i s =

© N

10
11
12
13
13
15
15



VI INDICE GENERAL

4. Plataformas experimentales 31
4.1. Sistema multiproyector de escenas dindmicas . . . .. ... ... 31
4.1.1. Generacién de escenas usando multiproyeccion . . . . . . 32

4.1.2. Validacién de formacién de imégenes dindmicas . . . . . . 34

4.2. NVIDIA Jetson Nano . . . . ... ... ... ... ........ 35
4.2.1. Requisitos preliminares . . . . . ... ... ... .. ... 35

4.2.2. Instalacién de la imagen Jetson Nano . . . .. ... ... 36

4.2.3. Instalacién de TensorFlow . . . . . .. ... ... ..... 36

4.2.4. Instalacion de PyTorch y torchvision . . . . . ... .. .. 37

4.2.5. Instalacién del controlador PCA9685 . . . . . . ... ... 38

5. Resultados experimentales 39
6. Conclusiones 47
A. Estimacién de homografias 49
B. Deteccion de objetos 51
B.1. Flujooptico . . . . . . . .. 51
B.2. Espaciode colores . . . . .. ... oo 55
B.3. Filtros de correlacion . . . . . ... .. . Lo 56
B.4. Redes neuronales convolucionales . . . . . ... .. .. ... ... 57

Bibliografia 59



Indice de cuadros

3.1. Errores de estimacién de pose de la camara de la trayectoria
conocida. . ...

VII



VIII INDICE DE CUADROS



Indice de figuras

2.1.

2.2

2.3.

2.4.

2.5.

2.6.

2.7.
2.8.

2.9.

La pose de la camara y los puntos en el espacio tridimensional
son definidas por el sistema de coordenadas global xyz. Mientras,
el trazo de rayos es descrita por el sistema de coordenadas de
la cdmara wvw. Por tltimo, el plano imagen es descrita por su
sistema de coordenadas pixel pv. . . . .. ..o

Superficie del plano imagen producida por la funcién g(d) que
reproduce distorsién radial de tipo (a) barril, y (b) cojin. Cuando
la distorsién radial de la camara es nula, la superficie es plana,
como se ilustra con el plano amarillo en la figura. . . . . . . . ..

(a) Arreglo de pixeles fotosensibles donde su forma estd dada
por el dngulo de oblicuidad £. (b) Representacién de puntos en
coordenadas fisicas a coordenadas pixel. . . . .. ... .. ....

Iméagenes de entrada (20 de 52) para detectar los puntos s; ; del
patrén de calibraciéon. . . . . . ... o

(a)-(d) Imagenes de entrada capturadas con una cdmara fisheye.
(e)-(h) Imégenes sin distorsién radial obtenidas usando el mo-
delo de cdmara pinhole con distorsién radial. Las imagenes sin
distorsién permiten simplificar el proceso de deteccién de lineas
de carril usando lineas rectas. . . . . . . ... .. oL
Deteccién de objetos usando flujo 6ptico. (a)-(d) Imégenes de en-
trada con objetos en movimiento. El flujo 6ptico se estimé usando
el método de Horn-Schunck. (e)-(h) Mascaras binarias obtenidas
al umbralizar los niveles de flujo 6ptio estimados. (i)-(1) Objetos
en movimiento detectados en la escena. . . . ... ... ... ..
Escena experimental para el vehiculo terrestre. . . . . .. .. ..
Detecciones del robot movil terrestre usando filtro de correlaciéon
en ambos dispositivos. . . . . ...
Resultado de la estimacion de posicion en el espacio tridimensio-
nal mediante el método de la triangulaciéon. . . . . . . ... ...

IX



3.1

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

4.1.
4.2.

4.3.

4.4.

4.5.

INDICE DE FIGURAS

Escena experimental para estimar la pose de la camara sujeta a

desplazamiento lineal. . . . . . .. ... ... ... L. 22
Resultado de la triangulacién de puntos de los patrones de cali-
bracién en una escena. . . . . . ... ..o 23
Escena capturada con un desplazamiento a lo largo del eje z para
estimar la pose de la camara y su distancia de traslacion. . . .. 24

Imagen izquierda y derecha capturadas con una camara en posi-
cién inicial y final. Las lineas conectan los puntos caracteristicos

detectados. . . . . . ... L Lo 25
Escena reconstruida mediante una secuencia de imagenes captu-
radas por Una CAMATA. . . . . . . ¢ o o v v e b e 25

Resultado obtenido mediante ajuste conjunto en la reconstruccién
tridimensional. . . . .. ... oL Lo oo 26
Escenas de prueba usadas para estimar la pose de la camara.
(a) Primera y tltima imagen de la secuencia de una trayecto-
ria simple. (b) Primera y ultima imagen de la secuencia de una
trayectoria conocida usando la base de datos New Tsukaba. . . . 27
Resultados obtenidos mediante la estimacién de pose usando la
informacion tridimensional y estimacién de pose usando consen-
so de muestra aleatoria (Random Sample Consensus o RANSAC,
por sus siglas en inglés). La linea verde corresponde a la trayecto-
ria estimada y la linea azul corresponde la trayectoria de referencia. 28
Distintas trayectorias estimadas fueron evaluadas para determi-
nar la precision y robustez de los algoritmos implementados. La
linea verde corresponde a la trayectoria estimada, la linea azul
corresponde la trayectoria aplicando RANSAC, y la linea roja
corresponde a la trayectoriareal. . . . .. ... . Lo 29

Generacién dinamica de escenas usando un sistema multiproyector. 32
Proyector desplegando un segmento de imagen en el plano de
referencia. La relacion entre el plano diapositiva y el plano de
referencia estd dado por una matriz homografia G. . . . . . . .. 33
Algoritmo propuesto para mostrar una imagen mosaico coherente
en el plano de diapositivas. (a) Se utiliza una imagen de referen-
cia para determinar la relacién entre los planos. (b) La imagen
de referencia se vuelve a proyectar utilizando la homografia de-
terminada para encontrar las coordenadas de la diapositiva en el
plano de referencia. (c) Resultados de la imagen correspondiente
a mostrar en el proyector. . . . . ... ..o 34
(a) Cuatro proyectores iluminando el campo de prueba. (b) Ima-
gen mosaico construido por la superposicién coherente de los pla-
nos diapositiva. . . . . . ... o 35
(a) y (b) Posiciones detectadas del robot mévil en diferentes foto-
gramas tomados por dos cdmaras, respectivamente. (c¢) Se mues-
tran las posiciones tridimensionales del robot mévil. . . . . . . . 36



INDICE DE FIGURAS XI

5.1. Etapas de la calibraciéon de un proyector para desplegar imagenes
superpuestas. (a) Puntos del patrén de calibracién proyectado.
(b) Puntos conocidos en el plano de referencia. (c) Re-proyeccién
de la imagen de entrada para validar que se ha detectado correc-
tamente el plano de referencia. Observe las lozas del suelo estan
alineadas en filas horizontales y verticales del mismo tamano. . . 40
5.2. Ambas son imdgenes de salida en distintas perspectivas. (a) Es
la imagen o diapositiva que desplegard el proyector, y (b) es la
imagen desplegado hacia el plano de referencia de la escena. . . . 40
5.3. Resultado de calibracién de proyectores. (a) Simulacién de la pla-
taforma calibrada para una configuraciéon de cuatro proyectores.
(b) Plataforma de la escena real usando los pardmetros obtenidos
para generar imagenes superpuestas por los sistemas de proyec-

tores configuradas. . . . . . ... ... L 41
5.4. Diagrama de flujo del algoritmo propuesto para la estimacién de
pose usando la informacién tridimensional. . . . . . . . . . . ... 42

5.5. Las posiciones estimadas se derivan de puntos tridimensionales
obtenidos. (a) El vehiculo no puede continuar la navegacién de-
bido a la insuficiencia de puntos usados. (b) El vehiculo logra

completar la trayectoria planificada. . . . . . ... .. ... ... 44
5.6. Los puntos en seguimientos y posiciones estimadas por la nave-
gacién del robot mévil terrestre en la pista dindmica generada. . 45

B.1. La velocidad u,v forma parte de la linea recta perpendicular al

vector de nivel de intensidad E,, Ey,. . . . ... .. ... ... 52
B.2. Simulacién para determinar el flujo éptico en una escena con
objetos en movimiento. . . . . . ... ..o oL 54

B.3. Diferentes visualizaciones del flujo éptico. (a)-(c) Son resultados
obtenidos mediante el método de Lucas-Kanade. Por otro lado,
(d)-(f) son resultados obtenidos del método de Horn-Schunck. . . 54

B.4. Deteccién de colores mediante el uso de méscaras. (a) Imagen
de entrada. (b) Méscara binaria. (c) Imagen de salida. (d)-(f)

Mascaras binarias de los canales del espacio HSV.. . . . . . . .. 55
B.5. Detector de objetos mediante la informacién obtenida por los
colores. . . ... 56

B.6. Deteccién de un robot mévil terrestre usando filtros de correlacion. 57
B.7. La arquitectura de la red residual de 18 capas estd organizada en

un conjunto de bloques residuales, los cuales permiten omitir dos

capas convolucionales. La tltima capa es crucial, ya que finaliza

el proceso de aprendizaje y produce los resultados. . . . . . . .. 58
B.8. Bloque de aprendizaje residual. . . . . . ... ..o 58



XII

INDICE DE FIGURAS



o 1

Capitulo

Introduccion

La navegacion de robots méviles ha emergido como un campo de gran impor-
tancia tanto en el 4&mbito cientifica y comercial [1-3]. Estd rama de la robdética,
se enfoca en dirigir vehiculos auténomos de manera eficiente y segura a través
de sus respectivos entornos. Por esta razon, el desarrollo y mejoramiento de los
sistemas de navegacion es importante para incrementarla confiabilidad y segu-
ridad en aplicaciones tales como logistica automatizada, y asistencia personal
en entornos domésticos, entre otras.

La navegacién auténoma de un vehiculo requiere varios sensores para detec-
tar la orientacién y posicion del vehiculo en el espacio, y desplazarse por una
ruta que puede ser predeterminada. Los laseres y sonares han sido los sensores
predominantes para estas aplicaciones, proporcionando datos precisos de pose
y proximidad entre objetos de la escena [4]. No obstante, estos sensores presen-
tan desafios significativos en términos de costo y eficiencia energética, ademads,
tiene un alcance de deteccién limitado que puede comprometer la efectividad de
entornos complejos o no estructurados. Por otro lado, los avances recientes en
visién computacional estan marcando grandes logros en la navegacién de robots
moviles. Las caAmaras modernas, particularmente los sistemas de vision estéreo
y los sistemas de inteligencia artificial, extiende considerablemente las capaci-
dades de visién de los vehiculos auténomos. Ademads, se los sistemas de vision
proporciona informacién visual abundante que puede ser aprovechada para una
amplia gama de tareas, incluyendo la navegacion y el reconocimiento de objetos.

El uso de un sistema de visién para la navegacion de robots modviles no solo
reduce los costos asociados, sino que también disminuye el consumo energéti-
co, un factor critico para la operacién prolongada de robots auténomos. Las
técnicas de visién por computadora permiten la integracién de algoritmos de
inteligencia artificial y reconocimiento de patrones, los cuales pueden mejorar
significativamente la autonomia y la adaptabilidad de los robots méviles en
entornos dindmicos.

Los robots de navegacion visual pueden realizar un mapeo y localizaciéon
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simultaneos (SLAM) de forma més efectiva comparado en contra de sensores
tradicionales [5]. Ademds, la integracién de técnicas como inteligencia artificial
permite que los robots mdéviles interpreten y respondan a su entorno de manera
mas natural y eficiente, imitando los aspectos del procesamiento visual humano.

Los sensores tradicionales siguen siendo prevalente en el area de investiga-
cién, sin embargo, la integraciéon de tecnologias de vision computacional indi-
ca mejoras donde los robots méviles seran capaces de operar de manera mas
auténoma y eficiente, incluso en entornos complejos y cambiantes. Esto no solo
mejora la capacidad para desempenar tareas en distintos escenarios, sino que
también abre nuevas aplicaciones de la robdtica, desde la exploracion de terrenos
hasta la asistencia en tareas domésticas y urbanas [6—10].

Los sistemas de visién aprovechan méaxima capacidad de las cdmaras para
capturar datos multidimensionales del entorno, los cuales son cruciales para la
navegacion en entornos complejos. Por esto mismo, la implementacién de al-
goritmos para procesar los datos y extraer la informacion ain son desafiantes.
Estos métodos incluyen la deteccién de objetos, reconocimiento de objetos, la
estimacién de la posicién y orientacién (pose) de la cdmara, y el descarte de
informacion irrelevante o ruidosa. Este problema y manejo de datos se vuelven
intrinsecamente multidimensionales. Cada imagen capturada no solo representa
una matriz bidimensional de pixeles, sino que también incluye informacion de
color a través de los canales RGB, coordenadas espaciales de cada pixel, multi-
ples parametros de la pose de la camara, y marcas de tiempo que indican cuando
se capturd cada imagen.

Ademids de la complejidad inherente, los sistemas de navegacién visual fre-
cuentemente se complementan con sensores auxiliares como giréscopos y ace-
lerémetros. Estos dispositivos ayudan a mejorar la precisién de la estimacion de
la pose de la camara y del robot, proporcionando datos sobre el movimiento y
la orientacién que pueden ser dificiles de obtener solo a través de las imagenes.
La integracion de estos datos sensoriales multiples en un marco coherente es
crucial y se realiza a través de técnicas de fusion de datos.

A pesar de los avances en la navegacién visual, existen varios desafios criti-
cos que se puede enfrentar. La complejidad computacional es uno de ellos, el
procesamiento de grandes voliimenes de datos visuales y en tiempo real requiere
algoritmos optimizados y equipo de alto rendimiento. Otro desafio importante
es la robustez del sistema frente a la pérdida de caracteristicas visuales criticas,
que puede ocurrir debido a cambios de iluminacién, obstrucciones temporales, o
entornos poco estructurados. Por 1ltimo, en el caso de emplear varios sensores,
la integracion o fusién de datos provenientes de miltiples fuentes es otro desafio
a superar. Estos aspectos son cruciales para garantizar que los robots moviles
puedan operar de manera eficiente y segura en entornos complejos y dindmicos.
Aunque se han hecho progresos, la capacidad de los robots para navegar en
entornos inciertos con precisién todavia estéd lejos de ser 6ptima [11, 12]. Estos
desafios son detonantes para la investigacién cientifica dentro de la comuni-
dad de visién por computadora, y resolverlos es clave para lograr sistemas de
navegacion practicos y efectivos en una amplia variedad de aplicaciones.

Uno de los componentes fundamentales que requiere atencién es la estima-



cion de la pose del vehiculo, que es vital para cualquier sistema de navegaciéon
de robots méviles. La pose del vehiculo, que incluye posiciéon y orientacion, de-
be determinarse con alta precisién para que el sistema de navegacién funcione
correctamente. Las inexactitudes en la estimacién de la pose originan errores
de navegacién que conducen a la incapacidad de realizar las tareas de nave-
gacién asignadas e incluso colusiones. Por esta razén, es esencial mejorar las
técnicas de estimaciéon de pose. Esto incluye en desarrollar nuevos algoritmos
que integren de manera mas efectiva multiples sensores, como camaras, LIDAR,
y sensores inerciales. La fusién de datos de estos diversos sensores, a través de
técnicas como el filtro de Kalman, o el filtro de particulas, puede proporcionar
una estimaciéon mas precisa y robusta de la pose del robot.

Por otro lado, la implementaciéon de tecnologias de aprendizaje automaético
y aprendizaje profundo puede ofrecer mejoras significativas en la capacidad de
los sistemas de navegacion para adaptarse y responder a entornos no estructu-
rados o desconocidos. Por ejemplo, los modelos de aprendizaje profundo pueden
ser entrenados para identificar patrones complejos y adaptarse a variables del
entorno. Asi, los modelos de aprendizaje tienen el potencial de mejorar la preci-
sién de la estimacion de pose y toma de decisiones en tiempo real. Sin embargo,
el proceso de entrenamiento de los sistemas de aprendizaje requiere grandes
cantidades de imédgenes y mucho tiempo de procesamiento. Los sistemas digi-
tales permite procesar datos crudos en modelos o patrones simples que pueden
ser utilizados para diversas aplicaciones, incluyendo la deteccion y localizacion
de objetos [13-17]. Por ejemplo, los sistemas de visién permiten detectar la
ubicacion bidimensional de un objeto en multiples imégenes y determinar por
triangulacién la posicién del objeto y el robot en el espacio. Este proceso es
fundamental para la navegacién y manipulacién precisa en el espacio [18].

En este trabajo de tesis se propone desarrollar un algoritmo para la navega-
cién de un robot mévil terrestre mediante retroalimentacion visual. El enfoque
se centrara en el uso de un modelo de cdmara pinhole, que incluye la correcciéon
de distorsion radial, para representar adecuadamente la geometria y el cam-
po de visién del sistema visual del vehiculo. Este modelo es particularmente
util para estimar y corregir distorsion radial, cominmente encontrada imagenes
capturadas por cdmaras digitales convencionales.

Se utilizaran técnicas de calibracién para obtener los parametros intrinsecos
y extrinsecos de la cdmara, asi como su distorsion. Los pardametros intrinsecos
se relacionan con las caracteristicas opticas de la cAmara, como la distancia fo-
cal, tamano de pixel, distorsién, y el centro éptico, mientras que los parametros
extrinsecos describen la posicién y orientacion de la camara respecto a un sis-
tema de referencia global. Estos parametros son la parte fundamental para el
sistema de visién interprete correctamente la informacién espacial del entorno y
asi facilitar una navegacion precisa y efectiva. El enfoque utilizado fue concebido
para lograr alta precisién en la reconstruccién 3D y aumentar la eficiencia del
sistema de navegacion mévil.

En esta tesis se propone un método de navegacion basado en retroalimen-
tacion visual empleando procesamiento multidimensional. Este trabajo aborda
especificamente los retos asociados con la estimacién de la posicién y orien-
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tacion del vehiculo y la reconstruccién tridimensional del entorno a partir de
informacién visual. La implementacién del método propuesto utiliza una cdma-
ra previamente calibrado y los puntos de correspondencia entre el plano de la
imagen y el espacio tridimensional son detectados. El método propuesto se ba-
sa en los conceptos fundamentales de formaciéon de imagenes y la adaptacion
del modelo pinhole a cdmaras con lentes de campo visual amplio (fisheye). Se
incorporaron técnicas deteccion y seguimiento de puntos para localizacién y se-
guimiento de caracteristicas en la escena, ademds de triangulacién de puntos
para la deteccién de caracteristicas tridimensionales y ubicacion espacial. Fi-
nalmente, se optimiza la estimacion de la pose de la cAmara, permitiendo una
navegacion precisa y el trazo de la trayectoria del vehiculo.

El método propuesto fue evaluado experimentalmente usando secuencias de
video. Los resultados obtenidos fueron analizados en términos de la precisién en
la estimacién de la trayectoria de la cadmara. El método propuesto es esencial
para la navegacién auténoma y ha demostrado ser un area de interés creciente
debido a su aplicacién potencial en diversos campos de la investigacién, como la
robdtica mévil y la realidad aumentada. En resumen, esta investigacion propone
mejorar la precision y robustecer los sistemas de navegacién visual, superando
los desafios actuales y ampliando su aplicabilidad en préacticas reales. La con-
tribucién de esta tesis no solo avanza en el campo académico, sino que también
tiene el potencial de influir significativamente en las aplicaciones industriales y
comerciales, mejorando la autonomia y la eficiencia de los sistemas de navega-
cién visual en entornos complejos.

Este documento estd organizado de la siguiente forma. En el capitulo 2 se
analizan los principios tedricos para determinar los parametros de la cdma-
ra pinhole con distorsién radial. Después, el capitulo 3 propone el método de
estimacién de pose usando la informacién tridimensional. Posteriormente, el
capitulo 4 presenta las herramientas configuradas para la validacién del algo-
ritmo propuesto. En el capitulo 5 se presentan los resultados obtenidos de este
trabajo de tesis. En el capitulo 6 se presentan las conclusiones del trabajo de
investigacion y el trabajo a futuro. Este documento de tesis es complementado
por dos apéndices que facilitan la implementacion del algoritmo propuesto. El
apéndice A presenta conceptos para estimar la homografia usando puntos de
correspondencia. Finalmente, el apéndice B presentan los métodos de deteccion
utilizados en este trabajo de tesis.

1.1. Objetivos

1.1.1. Objetivo general

El objetivo general de esta tesis es desarrollar un algoritmo para la nave-
gacion de un robot movil terrestre aplicando técnicas épticas de localizacién y
reconstruccién visual de la escena usando métodos de procesamiento multidi-
mensional.
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1.1.2. Objetivos especificos

Los objetivos especificos para el desarrollo de este trabajo de tesis son los
siguientes.

1.2.

Anélisis y evaluacién del modelo de caAmara pinhole con distorsién radial.

Implementacién y calibraciéon de camaras con lentes de campo de visién
amplio.

Anélisis y evaluacién de un método de deteccién de objetos.

Anélisis y evaluacién de un método triangulacion para sistemas con multi-
ples dispositivos.

Diseno de una plataforma de proyeccién de escenas para la evaluacion de
la navegacién de vehiculos terrestres.
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Capitulo

Modelo de camara opto-digital

2.1. Proceso de formacién de imagenes

El proceso de formacién de imagenes usando el modelo camara pinhole es la
configuracién més estudiada en la literatura debido a su simplicidad [19,20]. Para
aplicaciones de visién por computadora es suficiente el modelo pinhole debido a
que la distorsién radial en las cAmaras modernas son despreciables. No obstante,
cuando se requiere adquirir la informacién que abarque la mayor parte de la
escena, es necesario utilizar una configuracién con lentes de alto campo visual.
Estas lentes generan una distorsion radial fuerte en las imdgenes capturadas no
reproducibles con el modelo pinhole, provocando discrepancias en los resultados
estimados. Para evitar los errores de estimacién, se debe corregir la distorsion
radial de las imédgenes de entrada. Por esto, es fundamental determinar los
parametros de distorsién la ciAmara. Usualmente se asume que los pardmetros
de distorsiéon de la cdmara son aproximados, independientemente del proceso
de formacién de imagen [21-23]. Sin embargo, al analizar los pardmetros de la
camara, se observa que la distorsion radial depende tanto del tamano del pixel
como de la coordenada del punto principal. Por este motivo, la distorsién radial
se toma en cuenta dentro del proceso de formacién de imédgenes. Por esta razon,
se propone un modelo matematico para el proceso de formacién de imagenes
que extiende el modelo de la camara pinhole para incluir la distorsiéon radial.
Este modelo propuesto se divide en tres principios: transformacién rigida, trazo
de rayos y muestreo.

2.1.1. Transformacién rigida

La transformacion rigida describe la posicién y orientacién de la cdmara en
el espacio tridimensional. Esta transformacién determina la relacién entre las
coordenadas del mundo real (xyz) y las coordenadas de la cdmara (uvw), como
se muestra en la figura 2.1. En el sistema de coordenadas global, un punto en el

7
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Figura 2.1: La pose de la camara y los puntos en el espacio tridimensional son
definidas por el sistema de coordenadas global zyz. Mientras, el trazo de rayos
es descrita por el sistema de coordenadas de la cdmara uvw. Por tltimo, el plano
imagen es descrita por su sistema de coordenadas pixel pv.

espacio tridimensional se representa como

p:[pfca Dy, pz]T- (2~1)

Cuando el punto p es observado por la camara, la coordenada local que re-
presenta el mismo punto se expresa como un vector b = [b,, b,, b,]? dado
por

b=R"(p—t), (2.2)

donde R es una matriz de rotacién y t es un vector de traslacién. Ambos parame-
tros, rotacién y traslacién, especifican la pose de la cdmara. La ecuacién (2.2)
se puede expresar de manera mas conveniente utilizando el operador de coorde-
nadas homogéneas H como

b= LH|[p|, (2.3)

donde
L=[R", -R"t (2.4)

es conocido en la literatura como la matriz de los pardmetros extrinsecos de la
camara.
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(a) (b)

Figura 2.2: Superficie del plano imagen producida por la funcién g(d) que re-
produce distorsién radial de tipo (a) barril, y (b) cojin. Cuando la distorsién
radial de la cdmara es nula, la superficie es plana, como se ilustra con el plano
amarillo en la figura.

2.1.2. Trazo de rayos

El trazo de rayos es una descripcién abstracta para representar los rayos de
luz que viajan desde la escena, cruzan el pinhole de la camara, y alcanzan el
plano imagen. Para realizar esta transformacién, es conveniente definir el rayo
de luz como aquella linea recta que pasa por el punto b y el origen del sistema
de referencia de la camara; esto es,

£=)\b. (2.5)

Por lo tanto, el punto b es detectado como un punto d = [d,,d,] en la imagen
que es la interseccién de la funcién g(d), que representa la imagen, y la linea £.

Es decir,
[g(‘z)] b, (2.6)

La distorsion radial es determinada por la distancia del punto d desde el punto
principal. Dado este razonamiento, se puede modelar la superficie como un po-
linomio en potencias de la norma Euclidiana ||d||. Por lo tanto, la superficie de
la imagen es representada como

g9(d) = f +&2|d||* + 0| d||> + - - + b, [|d||, (2.7)

donde i,k =1,2,...,w son los pardmetros de distorsién. La figura 2.2 illustra
dos tipos de superficie g(d) que generan la distorsién radial barril y cojin, que
se encuentra tipicamente en la literatura.
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(a) ) (b)

Figura 2.3: (a) Arreglo de pixeles fotosensibles donde su forma esté dada por el
angulo de oblicuidad £. (b) Representaciéon de puntos en coordenadas fisicas a
coordenadas pixel.

2.1.3. Muestreo

El muestreo es el proceso de capturar la imagen proyectada en el plano de
la cdmara, convirtiendo la informacién continua de la escena en un conjunto de
datos discretos (pixeles). El sensor de la cdmara contiene un arreglo de pixeles
fotosensibles donde las imagenes son formadas a partir de la informacién ge-
nerada en la superficie por el trazo de rayos. De este modo, los puntos d en
coordenadas uv son transformadas a coordenadas pixel pv, como se muestra en
la figura 2.3. Considerando que el sensor de la camara tiene pixeles de tamano
o, X0, y un dngulo de oblicuidad ¢, las coordenadas del punto principal (d,, dy)
se puede transformar a su respectivo coordenada pixel (d,, d,) como

(2.8)

Esta transformacién se puede generalizar para cualquier punto de observacion.
Por lo tanto, si 7 = [TH,TZ,]T son las coordenadas pixel del punto principal.
Entonces, la coordenada pixel s de un punto imagen d es dada por

H[s] = SH[d], (2.9)
donde S es la matriz de muestreo definida como

1/o, —(tan§)/o, T,
S=10 (sec&) /o, T . (2.10)
0 0 1

Una vez definida la matriz de muestreo, el proceso del trazo de rayos y el
muestreo se puede simplificar como

H[s] = KH[b], (2.11)
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donde K es la matriz de los parametros intrinsecos de la caAmara. La matriz K
es definida como

k1w ki ks
K=SZ5=10 hy kyl, (2.12)
0 0 1
donde ;
- Iy 02]
== : 2.13

es la matriz diagonal de escala, f es la distancia focal, I es la matriz identidad
de tamano 2 x 2, y 05 es un vector de ceros de tamano 2 x 1. Con estos conceptos
en mente, se procede a examinar el modelo de caAmara pinhole con distorsiéon
radial.

2.2. Modelo pinhole con distorsion radial

Para el modelo de la cdmara pinhole con distorsién radial, la matriz K de
parametros intrinsecos es usada para expresar la re-proyecciéon de un punto en
su coordenada pixel al plano superficie. Substituyendo la ecuacién (2.6) en la
(2.11), se obtiene

d/f =H 'K 'H][s]. (2.14)

Considerando la estructura particular de la matriz de parametros intrinsecos K
(matriz triangular superior), su inversa tiene la forma

_ A
KlthH, (2.15)
donde
_|a1nr a12 ai13
A= { 0 am GQJ . (2.16)

Por lo tanto, la direccién del rayo de luz detectado en el pixel s se puede escribir
usando las ecuaciones (2.6) y (2.7) como

d I
= fA(s, A0 2.17
L+Md2+%MW+~wwwd4 fA(s, 4,8 (2.17)
donde
n_ AM[s]
A(s, A, 6") = [1 —|—5’2||A'H[S]H2 + (%HA'H[S]HS b8 || ARS]¢ | (2.18)

! . , . .,
y &' es un vector que contiene los pardmetros de distorsion escaladas dadas como
/
04 0o f

% 53 f?

§=1"|= (2.19)

5] ot
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Si los parametros intrinsecos, extrinsecos y distorsién de la cdmara estdn
disponibles, entonces se puede calcular imagenes libres de distorsiéon radial utili-
zando las ecuaciones (2.3) y (2.17). Una vez comprendido el proceso de formacién
de imagenes, se busca determinar los puntos tridimensionales de la escena. En
este contexto, se presentara un método de triangulacién, el cual constituye un
enfoque inverso, permitiendo la reconstruccién de la geometria tridimensional a
partir de multiples perspectivas.

2.3. Estimacién de puntos tridimensionales

Para estimar puntos en el espacio tridimensional, se utiliza el principio cono-
cido como triangulacion. La triangulacién determina la ubicacién de un punto
en el espacio cuando éste es observado simultaneamente desde multiples pers-
pectivas. En particular, un sistema camara-proyector permite detectar puntos
en el espacio desde la perspectiva de la cdmara y del proyector. De esta forma,
es posible aplicar el principio de triangulacién y determinar la ubicacién de pun-
tos del espacio tridimensional. Las direcciones de observaciéon son determinadas
por cada dispositivo mediante el modelo pinhole. Por ejemplo, un punto p en el
espacio 3D es detectado en el plano imagen como un punto s como

s =H ' [CHIp]|, (2.20)

donde H es el operador de coordenadas homogéneas, y C = K[RT, —RTt] es la
matriz que representa la cdmara o proyector, e incluye los pardmetros intrinse-
cos, K, la orientacién dada por una matriz de rotaciéon, R, y la posicion dada
por un vector de traslacién, t. Aplicando el operador inverso de las coordenadas
homogéneas en la ecuacién (2.20), se obtiene

M([s] = K[RTp, —R"t, (2.21)

donde X es un escalar diferente de cero. Entonces, el punto p puede ser calculado
como

p=t-+ARK 'H]s], (2.22)
—
d

donde d = ARK~1H][s] es la direccién en la que el punto p fue observado, y
A es una incognita escalar. Por lo tanto, si el punto p es observado por dos
dispositivos, se obtienen un sistema de ecuaciones de la forma

p; =t + \idy,

2.23
Py = ta + Aods. (2:23)

Como el el vector p representa al mismo punto observado por los dos dispositi-
vos, entonces las ecuaciones anteriores se pueden igualar como

t1 + Ady =ty + Aads, (2.24)
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Despejando las variables incégnitas, la ecuacién (2.24) es reescrita como
)\1d1 — )\2d2 = tg — tl, (225)

o en su forma matricial como

A
[dy, —d;] [Aj =1y — 1, (2.26)
A S~ T
A

donde los constantes A; y A2 son estimadas usando el método de minimos cua-
drados (o A = (ATA)7LATT). Con las constantes estimadas, se utilizan la
ecuacién (2.23) para determinar el punto observador p mediante

=3P+ ). (227)

Cabe senalar que la triangulacién de puntos tridimensionales no se limita
Unicamente a un sistema camara-proyector, sino que puede adaptarse a sistemas
con multiples cAmaras y proyectores. En este enfoque, se consideran los puntos
de correspondencia entre imagenes para determinar las coordenadas tridimen-
sionales, lo que permite una mayor flexibilidad y precisién en la reconstruccion
tridimensional. En la siguiente seccién se presentardn resultados preliminares
del procesamiento de una secuencia de video capturada por una cdmara con
una lente fisheye, utilizando el modelo de cdmara pinhole con distorsién radial
analizado.

2.4. Validacién del modelo de camara pinhole
con distorsién radial

Se llevaron a cabo tres experimentos distintos para validar el modelo pro-
puesto para la cdmara pinhole con distorsién radial. En el primer experimento,
se calibré una camara para obtener sus parametros intrinsecos, extrinsecos, y
distorsion. En el segundo experimento, se determind la posicion de los objetos en
la imagen utilizando los parametros obtenidos de la cAmara para corregir la dis-
torsion inicial. En el tercer experimento, se determiné la posicién tridimensional
de un vehiculo terrestre en la escena utilizando el método de triangulacion.

2.4.1. Calibracion de camara con distorsién radial

En este experimento se empleé un tablero de ajedrez de 7 x 10 cuadros,
donde el lado de cada cuadro media 23,7 mm. Este patron de calibrcion facilité
la deteccién de los puntos de correspondencia (p, s) necesarios para llevar a ca-
bo la calibracién de la cdmara [24]. Se adquirieron 52 imégenes utilizando una
camara fisheye, como se muestra en la figura 2.4, las cuales fueron procesadas
para determinar sus respectivas homografias. Estas homografias resultan funda-
mentales para obtener la calibracién inicial mediante la aplicaciéon del modelo



14 CAPITULO 2. MODELO DE CAMARA OPTO-DIGITAL

500 1000 1800 2000 2800

S0 1000 1500 2000 2500

s

-
50 000 1500 2000 2500 50 1000 1500 2000 2500 S0 1000 1500 2000 2500 500 1000 1500 2000 2600 50 1000 1500 2000 2600
s 5 s 5 s

Figura 2.4: Imégenes de entrada (20 de 52) para detectar los puntos s; ; del
patrén de calibracion.

de la cdmara pinhole [20]. Los resultados de esta calibracién se utilizan como
entrada para la calibraciéon del modelo de caAmara pinhole con distorsién radial,
utilizando el método de Gauss-Newton formulado por minimos cuadrados [24].
Los parametros intrinsecos, extrinsecos y de distorsién obtenidos fueron:

Camara 1
K R t d
2.7090 -0.0032 0.2210 -0.7777| -0.3507| 0.5217 -1.41E+03 -0.3475
0 2.7040 0.3318 -0.6261 0.5069| -0.5925 2.34E+03 0.3818
0 0 1 -0.0567| -0.7875| -0.6137 1.16E+03
Cémara 2
K R t d
0.9441 0.0012 0.0347 0.8308| 0.4221| -0.3628 8.72E+02 0.1736
0 0.9459| -0.0508 0.5462| -0.4929| 0.6773 -4.35E+02 -0.1562
0 0 1 0.1071| -0.7608| -0.64003 1.19E+03

Para verificar la capacidad de eliminar la distorsién radial en imagenes, se
usaron los pardmetros obtenidos en el proceso de calibraciéon para procesar una
secuencia de video, como se ilustra en las figuras 2.5(a)-(d). Mediante el estudio
del proceso de formacion de imagenes, se corrigié la distorsién radial, como se
muestra en las figuras 2.5(e)-(h).
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(a) (b)

Figura 2.5: (a)-(d) Imagenes de entrada capturadas con una cdmara fisheye.
(e)-(h) Imégenes sin distorsién radial obtenidas usando el modelo de cdmara
pinhole con distorsién radial. Las iméagenes sin distorsién permiten simplificar
el proceso de deteccién de lineas de carril usando lineas rectas.

2.4.2. Detecciéon de objetos

Adicionalmente, se empled la secuencia de video obtenida con la céamara
fisheye para detectar objetos en movimiento mediante el uso del flujo 6ptico,
como se muestra en las figuras 2.6(a)-(d). Posteriormente, se generaron méasca-
ras binarias identificando las regiones con velocidades elevadas, como se muestra
en las figuras 2.6(e)-(h). Las méscaras obtenidas se usaron para identificar ob-
jetos en movimiento en la escena. Finalmente, se procede a la identificacién de
los objetos en funcién de la cantidad de pixeles concentrados dentro de una ven-
tana predefinida (se consideran al menos 300 pixeles para su clasificacién como
objeto), como se muestra en las figuras 2.6(i)-(1).

2.4.3. Estimacion de posicion tridimensional

En este experimento, se somete al vehiculo terrestre a una prueba de nave-
gacion simple. En esta primera prueba, el vehiculo debe desplazarse en la escena
a lo largo de una linea recta. El sistema de vision captura la escena desde dos
puntos de observacién diferentes, como se ilustra en la figura 2.7. Las cimaras se
calibran previamente para obtener los parametros intrinsecos, extrinsecos y de
distorsién. A través de la deteccién de objetos mediante un filtro de correlacion,
se localiza la posicién del vehiculo. La primera medicion se muestra en la figura
2.8 , y se utiliza para determinar su posiciéon tridimensional con el sistema de
vision. Luego, los puntos detectados por cada dispositivo se procesan mediante
el método de triangulacién para calcular su posiciéon real en el espacio tridi-
mensional. La trayectoria recorrida por el vehiculo se representa en la figura
2.9.
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Figura 2.6: Deteccion de objetos usando flujo éptico. (a)-(d) Imédgenes de entrada
con objetos en movimiento. El flujo 6ptico se estimé usando el método de Horn-
Schunck. (e)-(h) Méscaras binarias obtenidas al umbralizar los niveles de flujo
éptio estimados. (i)-(1) Objetos en movimiento detectados en la escena.
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Figura 2.7: Escena experimental para el vehiculo terrestre.

(b)

Figura 2.8: Detecciones del robot movil terrestre usando filtro de correlacién en
ambos dispositivos.
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Figura 2.9: Resultado de la estimacién de posicién en el espacio tridimensional
mediante el método de la triangulacion.

En este capitulo, se present6 un algoritmo para determinar la posiciéon de un
vehiculo terrestre en el espacio. Se analizé el sistema de formacién de iméagenes
de la cAmara usando el modelo pinhole con distorsién radial. El modelo empleado
permitié incluir el efecto de distorsién inherente a los lentes épticos de campo
visual amplio (fisheye). Este enfoque fue ttil para remover la distorsién radial
y simplificar considerablemente las tareas de deteccion de objetos y estimacién
de posicion.

Se probaron distintos métodos de deteccién de objetos, incluyendo deteccién
por color, flujo dptico, y filtros de correlacién. Cada método fue evaluado para
determinar ventajas, desventajas, y simplicidad de implementacién. Posterior-
mente, la deteccién del vehiculo a partir de cada cdmara del sistema permitié
calcular la posicién del vehiculo en el espacio tridimensional usando triangu-
lacién. Es importante destacar que este método no abordé la estimacion de
orientacién del vehiculo. En el proximo capitulo, se presentard un método para
estimar la pose del vehiculo utilizando informacién tridimensional de la escena.



Capitulo

Estimacion de pose usando
informacién 3D

En este capitulo se aborda un enfoque que permite determinar la pose de la
camara mediante la teoria de la geometria epipolar. Previo a ello, se revisaran
algunos conceptos fundamentales de la geometria epipolar y principios asociados
considerando el modelo de cdmara pinhole [19].

3.1. (Geometria epipolar

En una configuracién de sistema estéreo, las cdmaras pueden ser diferentes
y estar desalineadas. El punto de interseccién entre la linea que une los centros
de proyeccién de las cdmaras y el plano imagen se denomina epipolo. Las lineas
que pasan por el epipolo se conocen como lineas epipolares. Si e y e’ son los
epipolos en el plano imagen de la primera y segunda camara, respectivamente,
entonces las lineas epipolares son

£ =Hle] x H|z], (3.1)
¢ =*He') x H[Z'],
donde £ y x’ son puntos de correspondencia en la imagen de la primera y

segunda camara, respectivamente. La relacién entre ambos puntos se puede
definir como una transformacién proyectiva G entre camaras, dado que

x' = H ' [GH[x]]. (3.3)
Al sustituir la ecuacién (3.1) en la ecuacién (3.3), se obtiene
£ =Hle'] x GH[x]. (3.4)

19
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El producto vectorial se puede reescribir como una matriz antisimétrica H[e']«
como
£ =Hle'|«GHz], (3.5)

———
F

donde F' = H[e']« G es la matriz que relaciona a los planos de la cdmara median-
te sus epipolos. La matriz F' es conocida como matriz fundamental y permite
relacionar los puntos del plano izquierdo con lineas que intersecta al epipolo del
plano derecho o viceversa. Por lo tanto, se puede simplificar la estimacién de e’
al asumir que la pose de la primera cdmara se encuentra en el origen. El epipolo
e’ se determina como

e =K't (3.6)

donde K’ es la matriz de los pardmetros intrinsecos de la segunda camara, y t es
la posicién de la segunda camara respecto al sistema de coordenadas global. La
homografia del sistema se puede representar en su forma explicita en términos
de dos camaras como

G=GG"=KRK™! (3.7)

Combinando las ecuaciones (3.6) y (3.7) en la definicién de la matriz fundamen-
tal, se obtiene
F=[K't|xK'RK' = K" T[t],RK". (3.8)

Entonces, si se conocen los pardmetros intrinsecos de las cdmaras, obtenidos en
calibraciones previas, la matriz fundamental se puede simplificar como

E=K "TFK™' = [t|xR, (3.9)

donde E es conocida como matriz esencial. La matriz esencial encapsula la
relacién geométrica entre dos vistas de una escena tridimensional y se puede
descomponer para recuperar los pardmetros extrinsecos de la segunda camara
mediante descomposicién en valores singulares. Una vez que se han recuperado
los parametros de la cdAmara a partir de la matriz esencial, se aplica el método de
triangulacion para determinar los puntos tridimensionales correspondientes para
cada par de imédgenes. Es importante considerar que los puntos tridimensionales
estimados pueden estar afectadas por ruido introducido por errores de deteccion
o desfase de puntos. Para mitigar este problema, se busca minimizar el error de
reproyecciéon de puntos tridimensionales para cada pose estimada de la camara.
Este proceso de refinamiento es conocido en la literatura como ajuste conjunto
(en inglés: bundle adjustment) [25-28]. El ajuste conjunto es abordado en detalle
en la siguiente seccion.

3.2. Ajuste conjunto

El ajuste conjunto busca minimizar el error de reproyeccion de puntos que se
encuentran en distintas vistas. Para esto, se define la re-proyeccién de un punto
como

wi = HCHIP,)), (3.10)
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donde u; indica el j-ésimo punto de correspondencia de la imagen I;, C* es la
matriz de la cAmara que relaciona la imagen I, y el punto P; de la escena. Una
medicién convencional puede no satisfacer esa relacion debido a las perturbacio-
nes externas experimentadas durante el proceso de capturar de imagenes. Este
problema produce errores de reproyeccién, es decir los puntos detectados en la
imagen no coinciden con los puntos estimados a partir de la reproyeccion. Por
lo tanto, se debe ajustar la matriz de la cAmara y los puntos tridimensional de
tal forma que los errores de reproyecciéon se minimicen como

min Y " d(ji}, pl)?, (3.11)
ij
donde d(-, -) es la distancia geométrica entre dos puntos en el plano de la imagen.
Existen varias maneras de resolver este problema de minimizacién, incluyendo
métodos iterativos, minimos cuadrados no lineas, y Levenberg-Marquardt, entre
otras. En la siguiente seccion se describen dos métricas de error usadas para
evaluar la metodologia propuesta en este trabajo de tesis.

3.3. Meétricas de error

En este trabajo de tesis, se emplearan dos métricas de error especificas para
evaluar los resultados obtenidos del algoritmo de estimacién de pose usando
informacion tridimensional. Estas métricas fueron elegidas debido a su habilidad
para evaluar con precisién tanto la calidad como la precisién de la estimacién
de la pose.

3.3.1. Raiz del error cuadratico medio

La raiz del error cuadritico medio (RMSE, por las siglas en inglés: Root
Mean Square Error) es una métrica utilizada para evaluar la precisién de un
modelo de regresién. El método cuantifica las predicciones del modelo contra
los valores reales o experimentales obtenidos del sistema. En este caso, cuando
el valor RMSE es bajo, se considera que la capacidad predicativa del modelo es
buena. La ecuacién que caracteriza la raiz del error cuadratico medio es

n o2
Ermse = —21:1(1172 ) ; (3.12)

donde n es el nimero total de observaciones, y; es el valor real o experimental
obtenido en la i-ésima observacién en el sistema, y ¢; es el valor predicho por el
modelo. A diferencia de otras métricas de error, el RMSE es sensible a grandes
desviaciones puesto que los errores son ponderados cuadraticamente.

3.3.2. Error absoluto medio

El error absoluto medio (MAE, por las siglas en inglés: Mean Absolute Error)
es una métrica de evaluacién de regresién que proporciona una medida simple
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Figura 3.1: Escena experimental para estimar la pose de la cdmara sujeta a
desplazamiento lineal.

y facil de interpretar. Esta métrica estd definida como la magnitud promedio
de los errores absolutos entre las predicciones del modelo y los valores reales;
matematicamente,

Do |y — il

Byap = =100, (3.13)

A diferencia del RMSE, el MAE no penaliza severamente (cuadrdticamente) los
errores, sino de una forma lineal. Por esta razon, esta métrica es menos sensibles
a grandes desviaciones de error. En la siguiente seccién, se evaluara el método
de estimacion de pose propuesto, evaluando su desempeno en términos de las
métricas RMSE y MAE.

3.4. Validacién de estimacién de pose

En esta seccién, se llevard a cabo la validacién del algoritmo propuesto para
la estimacién de la pose utilizando tanto datos simulados como experimentales.
La evaluacién se realizard mediante la comparacién de los resultados obtenidos
con las métricas de error analizadas previamente. Diferentes escenarios seran
considerados para evaluar la eficiencia del método propuesto.

3.4.1. Estimacién de movimiento lineal

La primera evaluacion se realiza usando una escena con puntos conocidos de-
finidos por patrones de calibracion. Se registra la distancia de desplazamiento de
una camara utilizando la informacién tridimensional de la escena. Inicialmente,
se estima la pose de una camara y posteriormente es desplazada linealmente 33
cm a lo largo del eje z. El desplazamiento se efectiio mediante un tripié que per-
mite cambiar la posicién de la cAmara de manera lineal. La figura 3.1 muestra
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Figura 3.2: Resultado de la triangulacién de puntos de los patrones de calibra-
cién en una escena.

la escena inicial con los patrones de calibracion usados para detectar los puntos
de interés. Los puntos fueron detectados usando las dimensiones reales de los
patrones y fueron procesados para determinar su posicién tridimensional [29].
En la figura 3.2 se presenta el resultado de la triangulacién de los puntos detec-
tados. La informacién tridimensional fue empleada para estimar la pose de la
camara obteniendo como resultado

0,8786 —0,1442  0,4552 —375.4
Ry = |—0,0646 —0,9804 —0,1859|, ¢, =| 36,1]. (3.14)
04731  0,1339 —0,8708 1322

Posteriormente, la caAmara se desplazd linealmente con ayuda del tripié y se
capturd una segunda imagen, como se muestra en la figura 3.3. De la misma
manera, los puntos de los patrones de calibracién fueron detectados y procesados
para estimar la posicién tridimensional de la caAmara, obteniendo

0,8773 —0,0953  0,4704 —561,4
Ry = |0,0109 —0,9759 —02181|, t,= | 485 ]. (3.15)
0,4798  0,1964 —0,8551 16548

Las orientaciones obtenidas son muy similares debido a que no se realizaron
cambios de angulo visual en la cdmara. Por otro lado, las posiciones t; y t5
exhiben correctamente el cambio de posiciéon de la cdmara de acuerdo con el
desplazamiento realizado a lo largo del eje z. El desplazamiento estimado entre
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Figura 3.3: Escena capturada con un desplazamiento a lo largo del eje z para
estimar la pose de la cdmara y su distancia de traslacién.

la posicién inicial y final de la cAmara se calculé como

186.0
d=ty—t, = | —124 | mm. (3.16)
—3328

Observe que la diferencia a lo largo del eje z, (—332,8 mm), es consistente con
el desplazamiento de 33 cm introducido usando el tripié de la cdmara (error de
2,8 mm). Estos resultados muestran una aproximacion suficiente para emplear
el método de estimacién de pose propuesto en tareas de navegacién de un robot
mévil terrestre.

3.4.2. Reconstruccion tridimensional

En este experimento, se realizé una reconstruccién tridimensional proyecti-
va a través de una secuencia de imédgenes capturada por una cadmara calibrada.
Primero, se detecta los puntos caracteristicos de la escena usando métodos como
Caracteristicas Robustas Aceleradas (SURF), Transformacién de Caracteristi-
cas Invariante a Escala (SIFT), Puntos Claves Robusto-Binarios Invariante a
Escala (BRISK), entre otros [30-33]. Las caracteristicas sirven para determinar
la correspondencia de puntos entre imagenes como se muestra en la figura 3.4.
La correspondencia de puntos obtenida fue utilizada para estimar la matriz fun-
damental y extraer la pose de la cAmara. La pose inicial estimada fue utilizada
para la triangulacién de los puntos caracteristicos. En la figura 3.5, se muestra
la trayectoria de la camara y el resultado de la escena construida. Finalmente,
se realiza un post-procesamiento para minimizar el error de re-proyeccién de los
puntos estimados usando el ajuste conjunto. Adicionalmente, se calcula el valor
de intensidad del pixel de los puntos obteniendo como resultado la figura 3.6.



3.4. VALIDACION DE ESTIMACION DE POSE 25

Figura 3.4: Imagen izquierda y derecha capturadas con una camara en posicion
inicial y final. Las lineas conectan los puntos caracteristicos detectados.

Figura 3.5: Escena reconstruida mediante una secuencia de imégenes capturadas
por una cadmara.
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Figura 3.6: Resultado obtenido mediante ajuste conjunto en la reconstruccion
tridimensional.

3.4.3. Evaluacién de error de estimacion de pose

En esta seccién se presentan los resultados de estimacion de pose obtenidos
procesado la secuencia de video capturada en dos pruebas. En ambas pruebas
la camara realiza un recorrido dentro de la escena. En los dos experimentos se
emplean camaras calibradas; es decir, se conocen las matrices de parametros
intrinsecos. Las imagenes de cada video son procesadas para detectar puntos
caracteristicos y estimar la pose de la camara.

En la primera prueba, la cAmara realiza una trayectoria simple, que consistié
en una traslacién a lo largo del eje horizontal. El propédsito de este experimen-
to fue verificar el funcionamiento y rendimiento del algoritmo propuesto. En
la segunda prueba, se usaron las imagenes de la base de datos New Tsukaba,
debido a que proporciona la trayectoria exacta realizada por la camara duran-
te su nagevacién dentro de la escena [34,35]. Esta tltima prueba fue ttil para
disponer la trayectoria de referencia y asi evaluar el rendimiento del algoritmo
de estimacion de pose. A continuacién, se describe el algoritmo para estimar la
pose de la camara usando la informacién tridimensional.

En la primera etapa del experimento, se inicializa el sistema asignando la
pose inicial de la cdmara en la primera imagen. La segunda pose de la cAmara se
calculada usando la segunda imagen y estimando la geometria epipolar [19,20].
Para esto, fue necesario detectar los puntos caracteristicos de ambas imagenes
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(b)

Figura 3.7: Escenas de prueba usadas para estimar la pose de la cdmara. (a)
Primera y tltima imagen de la secuencia de una trayectoria simple. (b) Primera
y ultima imagen de la secuencia de una trayectoria conocida usando la base de
datos New Tsukaba.
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Figura 3.8: Resultados obtenidos mediante la estimacién de pose usando la infor-
macién tridimensional y estimacion de pose usando consenso de muestra alea-
toria (Random Sample Consensus o RANSAC, por sus siglas en inglés). La
linea verde corresponde a la trayectoria estimada y la linea azul corresponde la
trayectoria de referencia.

usando el método de Caracteristicas Robustas Aceleradas (SURF, por las siglas
en inglés: Speeded-Up Robust Features), aunque otros métodos también pueden
ser usados [30-33]. Posteriormente, se determinan los puntos de correspondencia,
por medio de algoritmos de comparacién y se calcula la matriz esencial quien
contiene la segunda pose de la cdmara [36].

En la segunda etapa del experimento, se captura la siguiente imagen de
la secuencia de video y se obtienen nuevos puntos caracteristicos. Los puntos
nuevos son comparados con los puntos caracteristicos de la imagen previa en
la secuencia de video para determinar correspondencias. Como resultado, se
obtiene un nuevo par estéreo con una nueva geometria epipolar, que permite
estimar la nueva pose de la cdmara. Adicionalmente, se determinan los puntos
3D obteniendo una nube de puntos 3D y sus correspondientes puntos imagen
(2D) en la cdmara para la pose actual.

En la tercer etapa del experimento, se eliminan puntos de observacién que
tengan un error de reproyeccion mayor que un umbral prefijado. Después, se
calcula la pose de la cdmara mediante el método propuesto usando la informa-
cién tridimensional obtenida. Las etapas dos y tres se repiten hasta alcanzar la
ultima imagen de la secuencia de video del experimento.

Por ultimo, se refiné el ajuste minimizando el error de reproyeccién y pose
de cada vista observada [25—28]. Los resultados de cada experimento se puede
observar en las figuras 3.8 y 3.9. En la figura 3.8 se observa una trayectoria
simple que permitié verificar el funcionamiento correcto del método propuesto.
Ademass, se implementaron métodos alternativos para realizar comparaciones
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Figura 3.9: Distintas trayectorias estimadas fueron evaluadas para determinar la
precision y robustez de los algoritmos implementados. La linea verde correspon-
de a la trayectoria estimada, la linea azul corresponde la trayectoria aplicando
RANSAC, y la linea roja corresponde a la trayectoria real.

de resultados [37,38]. En la figura 3.9, se puede observar tres trayectorias. La
primera es la trayectoria estimada marcada con color verde, la segunda es la
trayectoria de comparacién marcada con color azul, y la tercera es la trayectoria
real marcada con color rojo. Haciendo uso de las métricas de error descrita en
la Seccién 3.3, se obtuvieron los niveles de error mostrados en la Tabla 3.1.

Los resultados obtenidos muestran que el método propuesto no logra altos
niveles de precision en cuanto a la estimacién de posicion. Por otro lado, la
precision en cuanto a la estimacién de la orientacion es aceptable para tareas de
navegacion planteadas en esta tesis. En resumen, el método propuesto es fun-
cional debido a los resultados preliminares obtenidos, aunque se debe trabajar
en mejorar la precision de las estimaciones de posicién.
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, Posicion

Método | ReNE [ MAE | Media | STD
Propuesto | 11.8942 | 8.5342 | 3.4066 | 11.2154
RANSAC | 8.9516 7.1590 | 3.2805 | 8.1240
Orientacién
Propuesto | 1.1070 1.5434 | 0.2518 | 1.0742
RANSAC | 0.6248 1.0843 | 0.1400 | 0.6023

Cuadro 3.1: Errores de estimacion de pose de la cdmara de la trayectoria cono-
cida.
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Plataformas experimentales

4.1. Sistema multiproyector de escenas dinami-
cas

Los sistemas de navegacién terrestres se estan volviendo cada vez mas im-
portantes en los tltimos anos [39-43]. La seguridad del usuario es un factor
primordial en las aplicaciones de navegacion. La falla de un sistema de nave-
gacién pueden tener consecuencias inaceptables, desde danos materiales hasta
lesiones y pérdidas humanas [414—16]. Por lo tanto, la correccién y efectividad de
los algoritmos son de vital importancia [47].

La validacién de algoritmos requiere evaluaciéon exhaustiva bajo una amplia
variedad de posibles escenarios de casos reales para minimizar el riesgo de fallos.
Diferentes estrategias de prueba han mostrado resultados aceptables en la eva-
luacion de algoritmos de navegacion, tales como pruebas en plataformas fisicas,
simuladores, y realidad virtual [48-51]. Sin embargo, estas estrategias no son
préacticas en todos los casos. Las plataformas fisicas son costosas y la evaluacién
exhaustiva requiere enormes recursos materiales, tiempo, y espacio. Por otro
lado, los simuladores y la realidad virtual tienen un gran ntimero de situaciones
de prueba, pero estan desconectados de la operatividad del vehiculo fisico.

En este trabajo, se propone la construccion de un sistema multiproyector
para la generacion de dindmica de escenas. El sistema multiproyector propuesto
permite realizar pruebas de navegaciéon vehicular en una gran cantidad de es-
cenas con bajos costos de produccién y de tiempo de preparacién. Este sistema
propuesto emplea cuatro proyectores para desplegar dindmicamente diferentes
pistas o escenarios, disenados para evaluar diferentes aspectos de navegacién.

El sistema multiproyector propuesto fragmenta la escena a desplegar y com-
pensa la distorsién generada por el angulo de proyeccién de cada proyector.
Esto se realiza considerando al proyector una “cdmara inversa” que transforma
de la imagen que se desea desplegar (escena) en una proyeccién sobre el plano
de referencia (fragmento de imagen distorsionado). Este proceso requiere cono-

31



32 CAPITULO 4. PLATAFORMAS EXPERIMENTALES

Figura 4.1: Generacién dindmica de escenas usando un sistema multiproyector.

cer la posicién y orientacién entre el plano de referencia y el plano diapositiva
del proyector, lo cual se puede describir matematicamente mediante una matriz
de homografia. Existen distintas metodologias para calcular dicha homografia.
Por simplicidad, se utilizardn cuatro puntos de correspondencia entre el plano
imagen y el proyector. Sin embargo, posteriormente se puede adaptar para un
ndmero arbitrario de puntos de correspondencia.

4.1.1. Generacién de escenas usando multiproyeccién

La creacién de escenas usando multiproyeccién (también conocido como
imégenes mosaico) es una técnica de procesamiento de imdgenes que genera una
tnica imagen superponiendo multiples fragmentos de la imagen total [52,53]. En
un sistema multiproyector, los planos diapositiva se superponen para crear una
unica imagen de mosaico, como se muestra en la figura 4.1. Adems4s, los proyec-
tores deben pre-distorsionar apropiadamente el fragmento de imagen asociado
para compensar la distorsién que introduce el angulo de proyeccién. Para esto,
es necesario determinar la relacién entre los planos de diapositivas y el plano de
referencia. En la figura 4.2 se muestra que la homografia relaciona un solo plano
de diapositivas y el plano de referencia. Con este enfoque, cada plano diapositiva
requiere una homografia para construir una imagen mosaico coherente. Sin em-
bargo, los planos diapositiva son desconocidos debido a la posicién y orientacién
de cada proyector del sistema. Sin embargo, es posible estimar las homografias
necesarias usando los puntos esquina del plano diapositiva y relacionarlos con
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Plano diapositiva

Plano de referencia

Figura 4.2: Proyector desplegando un segmento de imagen en el plano de refe-
rencia. La relacién entre el plano diapositiva y el plano de referencia estéa dado
por una matriz homografia G.

los puntos esquina del plano de referencia como se describe a continuacién.

Primero, el plano diapositiva se visualiza usando una imagen auxiliar arbi-
traria y establecer una nueva relacién con puntos conocidos del plano de referen-
cia. Por ejemplo, la figura 4.3(a) muestra los puntos de seleccién en la imagen
y su correspondencia es conocida porque el plano de referencia fue establecido
previamente. El método de estimacién usado en este trabajo se describe en el
Apéndice A. Una vez que se conoce la homografia entre el plano diapositiva y
el plano de referencia, se despliega la imagen de interés por re-proyeccién de
puntos usando la homografia inversa como

p=H G Hu]. (4.1)

Segundo, la re-proyeccién de la imagen recupera la posicién del plano de diapo-
sitivas en el plano de referencia y se selecciona en sentido contrario a las agujas
del reloj desde la esquina superior derecha, como se muestra en la fig. 4.3(b).
Los puntos seleccionados son esquinas del plano de diapositivas en coordenadas
del plano de referencia y sus puntos de correspondencia son

O PR A A

donde M y N son la altura y el ancho en pixeles del plano diapositiva del
proyector. De esta forma, la homografia que relaciona el plano de diapositi-
vas y el plano de referencia se puede determinar. Tercero, dado la homografia
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(c)

Plano de referencia | ] Plano de referencia

Figura 4.3: Algoritmo propuesto para mostrar una imagen mosaico coherente en
el plano de diapositivas. (a) Se utiliza una imagen de referencia para determinar
la relacién entre los planos. (b) La imagen de referencia se vuelve a proyectar
utilizando la homografia determinada para encontrar las coordenadas de la dia-
positiva en el plano de referencia. (¢) Resultados de la imagen correspondiente
a mostrar en el proyector.

se puede recuperar todas las coordenadas del plano de diapositivas aplicando
la re-proyeccién usando la ecuacién (4.1). Luego, se aplica una interpolacién
de imagen dividiendo el plano de referencia que corresponde al plano de dia-
positivas [54]. La figura 4.3(c) muestra la imagen resultante que el proyector
desplegara. Finalmente, el proceso se repetird para todos los proyectores del
sistema obteniendo una superposicién coherente de todos los planos de diaposi-
tiva. En la préxima subseccion, se presentan los resultados experimentales para
la plataforma digital de navegaciéon de vehiculos.

4.1.2. Validacién de formacién de imagenes dinamicas

La utilidad del método propuesto se verifico mediante la evaluacién de un
algoritmo de control de movimiento simple para el movimiento de un robot con
ruedas. Para este experimento, la pista de prueba se generé utilizaron cuatro pro-
yectores colocados en diferentes posiciones y orientaciones de tal forma que los
planos diapositiva illuminaran el campo de prueba, como se muestra en la figura
4.4(a). Posteriormente, se estimaron las cuatro matrices homografia asociadas a
cada proyector del sistema usando los puntos esquina de cada plano diapositiva
y el plano de referencia. Después, se usé la inversa de cada homografia estimada
para generar los fragmentos de imagen pre-distorsionados correspondientes a
cada proyector. Finalmente, los fragmentos de imagen resultantes se enviaron
hacia cada proyector, como se muestra en la figura 4.4(b).

La plataforma multiproyector construida se emple6 para evaluar la deteccion
de la posicién del robot mévil, como se muestra en la figura 4.5(a). Se configura-
ron las cdmaras para capturar la navegacion del vehiculo en la pista creada. La
secuencia capturada se procesé para detectar las posiciones del vehiculo utili-
zando filtros de correlacién [55]. En sistemas opto-digital, la posicién detectada
en coordenadas pixel puede usarse para determinar la posicién real del objeto
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Figura 4.4: (a) Cuatro proyectores iluminando el campo de prueba. (b) Imagen
mosaico construido por la superposicién coherente de los planos diapositiva.

en el espacio tridimensional mediante triangulacién. La figura 4.5(b) muestra la
trayectoria hecha por el robot en el espacio tridimensional. De esta forma, los
resultados mostraron que el método propuesto no interfiere con el método de
deteccion de posicién tridimensional para vehiculos terrestres robotizados y es
factible para otros algoritmos de navegacién de vehiculos.

4.2. NVIDIA Jetson Nano

Las pruebas experimentales realizadas en este trabajo se hicieron con un
robot equipado con una tarjeta Jetson Nano como plataforma computacional a
bordo. Esta plataforma computacional se eligié debido a su bajo costo energéti-
co y alto rendimiento computacional, ideal para aplicaciones prototipo. Esta
seccién proporciona una gufa para configurar la tarjeta Jetson Nano de 4GB
utilizando el lenguaje de programacion Python 3.6.9 y los marcos de aprendizaje
profundo TensorFlow, PyTorch y Torchvision, junto con los paquetes necesarios
para el controlador PCA9685.

4.2.1. Requisitos preliminares

Los requisitos preliminares para habilitar la tarjeta Jetson Nano son los
siguientes.

= Tarjeta microSD (minimo 32GB).
= Fuente de alimentacién (5V 4A recomendado).
= Teclado, ratén y monitor.

= Conexién a internet.
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Figura 4.5: (a) y (b) Posiciones detectadas del robot mévil en diferentes fotogra-
mas tomados por dos cdmaras, respectivamente. (c) Se muestran las posiciones
tridimensionales del robot movil.

4.2.2. Instalacion de la imagen Jetson Nano
1. Descargar la imagen de JetPack 4.5.2 desde el sitio web oficial de NVIDIA.
2. Usar la herramienta Etcher para cargar la imagen a la tarjeta microSD.
3. Insertar la tarjeta microSD en la Jetson Nano y encender el dispositivo.

4. Seguir las instrucciones en pantalla para completar la configuracién inicial
y crear una cuenta de usuario.

4.2.3. Instalacion de TensorFlow

La instalacion de TensorFlow en la tarjeta Jetson Nano requiere ejecutar
manualmente un proceso debido a las versiones especificas de JetPack y Python
que estan instaladas. Estos pasos son descritas a continuacién.

1. Abrir una terminal y actualizar el sistema.

sudo apt—get update
sudo apt—get upgrade

2. Instalar los paquetes necesarios para el sistema.

sudo apt—get install libhdf5—serial —dev hdf5—
tools libhdfb—dev zliblg—dev zip libjpeg8
—dev liblapack—dev libblas—dev gfortran
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3. Instalar y actualizar las bibliotecas de Python.

sudo pip3 install —U pip testresources
setuptools ==49.6.0

sudo pip3 install —U numpy==1.16.1 future
==0.18.2 mock==3.0.5 hbpy==2.10.0
keras_preprocessing==1.1.1
keras_applications==1.0.8 gast==0.2.2
futures protobuf pybindll

4. Instalar el TensorFlow.

sudo pip3 install —pre —extra—index—url
https://developer.download.nvidia.com/
compute/redist /jp/v45 tensorflow

4.2.4. Instalacion de PyTorch y torchvision

La instalacion manual de PyTorch y torchvision se realiza con las siguientes
instrucciones.

1. Abrir una terminal y descargar el PyTorch y torchvision pre-compilada
especificamente para la version de JetPack utilizada.

wget https://nvidia.box.com/shared/static/
p57jwntv4361lfrd78inwl7iml6p13fzh . whl —O
torch —1.10.0 —cp36—cp36m—linux_aarch64 . whl

git clone —branch v0.11.1 https://github.com
/pytorch/vision torchvision
2. Instalar las dependencias requeridas para la PyTorch y torchvision.
sudo apt—get install libopenblas—base
libopenmpi—dev libomp—dev

sudo apt—get install libjpeg—dev zliblg-—dev
libpython3—dev libopenblas—dev libavcodec
—dev libavformat—dev libswscale—dev

3. Instalar el PyTorch.
pip3 install ’Cython<3’

pip3 install numpy torch —1.10.0—cp36—cp36m—
linux_aarch64 .whl

4. Instalar el torchvision.
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cd torchvision
export BUILD_VERSION=0.11.1

python3 setup.py install —user

4.2.5. Instalacion del controlador PCA9685

La instalacién del controlador PCA9685 es mas sencilla, ya que se realiza
con una sola instruccién. Sin embargo, es crucial asegurarse de tener las versio-
nes especificas de las bibliotecas de Python para garantizar el funcionamiento
correcto de la tarjeta.

sudo pip3 install —U \
adafruit—circuitpython—busdevice==5.1.2 \
adafruit—circuitpython—motor==3.3.5 \
adafruit —circuitpython—pca9685==3.4.1 \
adafruit —circuitpython—register==1.9.8 \
adafruit—circuitpython—servokit==1.3.8 \
Adafruit—Blinka==6.11.1 \
Adafruit—GPIO==1.0.3 \
Adafruit—MotorHAT==1.4.0 \
Adafruit—PlatformDetect ==3.19.6 \
Adafruit—PurelO==1.1.9 \
Adafruit—SSD1306==1.6.2

Cabe senalar que es muy importante verificar cuidadosamente la instalacién
correcta de los paquetes y la version exacta de cada uno de ellos. Asimismo,
se debe asegurar de instalar los marcos de aprendizaje profundo TensorFlow,
PyTorch y torchvision, y los paquetes necesarios para trabajar con el controlador
PCA9685. La instalacién defectuosa, o instalacién de versiones incompatibles,
evitard desarrollar y ejecutar aplicaciones avanzadas de alto rendimiento en la
Jetson Nano.



Capitulo

Resultados experimentales

La evaluacién experimental del robot mévil en una prueba de navegacién
se realizé usando una pista dindmica generada con un sistema de cuatro pro-
yectores. La homografia asociada a cada proyector fue estimada previamente
relacionando el plano de referencia y el plano diapositiva de cada proyector. La
figura 5.1(a) muestran los puntos usados para la estimacién de homografias de
un proyector. Estos puntos fueron detectados utilizando un patrén de calibra-
cion desplegado por el dispositivo, asegurando una alta precisiéon en la corres-
pondencia de puntos. Por otro lado, los puntos del plano de referencia fueron
marcados en las intersecciones de los azulejos del suelo, como se muestra en la
figura 5.1(b). Esta calibracién aseguré que la proyeccién y deteccién de puntos
en el entorno fueran precisas, estableciendo como resultado la plataforma de
una imagen coherente. Después, se realizan el mismo procedimiento para cada
una de los proyectores empleados. La figura 5.1(c) muestra la re-proyeccién de
la imagen de entrada de un proyector para verificar que la homografia asociada
fue estimada correctamente.

Se implementé un sistema de transferencia inaldmbrico para enviar a los
proyectores los fragmentos de imagen correspondientes. La figura 5.2 muestra
un ejemplo de dos fragmentos de imagen que deben enviarse a dos proyectores.
Asimismo, la figura 5.3 muestra el resultado de proyectar las imagenes enviadas
a los proyectores. Esta configuracién permitié abarcar la mayor parte del campo
de prueba, facilitando el uso de la pista como ruta de navegacién para el vehiculo
terrestre.

Posteriormente, se captur6 un video por medio una red neuronal especializa-
da en la deteccion de lineas de carril, critico para la navegacién del robot mévil en
tiempo real. La deteccién precisa de estas lineas permitié al controlador ajustar
los pardmetros necesarios para guiar el robot mévil con alta precisiéon. Debido
a los movimientos del vehiculo, el video fue sometido a un pre-procesamiento
para mejorar la estabilidad de la grabacién, eliminando la fluctuacién o ruido
que pudiera afectar la precision del algoritmo propuesto.
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Figura 5.1: Etapas de la calibracién de un proyector para desplegar imagenes
superpuestas. (a) Puntos del patrén de calibracién proyectado. (b) Puntos co-
nocidos en el plano de referencia. (¢) Re-proyeccién de la imagen de entrada
para validar que se ha detectado correctamente el plano de referencia. Observe
las lozas del suelo estan alineadas en filas horizontales y verticales del mismo
tamano.

. -~

Figura 5.2: Ambas son imégenes de salida en distintas perspectivas. (a) Es la
imagen o diapositiva que desplegara el proyector, y (b) es la imagen desplegado
hacia el plano de referencia de la escena.
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Figura 5.3: Resultado de calibracién de proyectores. (a) Simulacién de la plata-
forma calibrada para una configuracién de cuatro proyectores. (b) Plataforma
de la escena real usando los pardametros obtenidos para generar imagenes super-
puestas por los sistemas de proyectores configuradas.
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Figura 5.4: Diagrama de flujo del algoritmo propuesto para la estimacion de
pose usando la informacién tridimensional.

El algoritmo propuesto fue utilizado para estimar puntos tridimensionales y
realizar el seguimiento de estos puntos con el fin de determinar la pose del robot
movil terrestre. Inicialmente, se llevé a cabo una estimacién preliminar de los
puntos en la escena. Después, se identificaron y rastrearon los puntos que podian
ser detectados nuevamente en la escena a través de distintas vistas. Estos pun-
tos de correspondencia permitieron obtener los trazos de rayos necesarios para
realizar la triangulacién, utilizando multiples vistas procesadas. El proceso de
triangulacién fue fundamental para obtener una reconstruccién tridimensional
precisa del entorno.

Al finalizar el procesamiento, se optimizaron las poses del vehiculo mediante
el método de ajuste conjunto. Este proceso implicé la estimacién de las re-
proyecciones de los puntos utilizando todas las vistas capturadas y los puntos
de correspondencia detectados. La reduccion de puntos redundantes y el ajuste
preciso de las poses resultaron en una mejora significativa de los resultados,
como se ilustra en la figura 5.5. Esta optimizacion se realizé utilizando el método
iterativo de Gauss-Newton, que minimiza el error de re-proyeccién y mejora la
precisiéon general del sistema. Finalmente, la figura 5.6 muestra las posiciones
estimadas a lo largo de toda la secuencia de video, optimizadas mediante la
deteccién y el seguimiento de puntos de correspondencia.

Los resultados obtenidos validan la eficacia del algoritmo de estimacion de
pose, mostrando que puede lograr una precisiéon similar a la obtenida con técni-
cas basadas en inteligencia artificial. Sin embargo, a diferencia de los métodos
basados en redes neuronales, que requieren un pre-entrenamiento extenso y cos-
toso en términos computacionales, el algoritmo propuesto no requiere esta fase
de pre-entrenamiento. Esta caracteristica reduce significativamente el tiempo y
los recursos necesarios para implementar el sistema, haciéndolo més accesible y
practico para diversas aplicaciones.
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La precision del algoritmo se comparé con varios enfoques de inteligencia
artificial en términos de estimacién de pose y seguimiento de caracteristicas.
Los resultados indicaron que, aunque los métodos basados en redes neurona-
les pueden ofrecer alta precisién, el algoritmo propuesto logra un rendimiento
comparable sin la necesidad de entrenamiento previo. Esto se debe a su capa-
cidad para procesar directamente la informacién tridimensional capturada por
las cAmaras y optimizar la pose del robot mdévil terrestre.

Ademas, el algoritmo demostrd ser robusto frente a variaciones en el entorno
y cambios en las condiciones de iluminaciéon, factores que a menudo afectan
negativamente a los sistemas basados en inteligencia artificial. Esta robustez
se debe en parte al uso de técnicas de procesamiento multidimensional y a la
integracién de multiples vistas para la triangulacién, lo que proporciona una
estimacién mas precisa y confiable de la pose del robot.
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Figura 5.5: Las posiciones estimadas se derivan de puntos tridimensionales obte-
nidos. (a) El vehiculo no puede continuar la navegacién debido a la insuficiencia
de puntos usados. (b) El vehiculo logra completar la trayectoria planificada.
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Figura 5.6: Los puntos en seguimientos y posiciones estimadas por la navegacion
del robot mévil terrestre en la pista dinamica generada.
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En esta tesis, se propuso un método de estimacién de pose basado en in-
formacion visual y una plataforma multi-proyector para la generacién de pistas
dindmica, tutiles para pruebas de navegaciéon. Se presentaron los fundamentos
conceptuales de operacién del sistema y se realizaron pruebas experimentales
de operacion. Los resultados obtenidos mostraron la factibilidad del método
propuesto para desarrollar estrategias navegacion para robots auténomos. Asi-
mismo, el sistema multi-proyector construido mostré gran utilidad para evaluar
otros sistemas de navegacién en entornos dindmicos.

Durante el transcurso del presente trabajo de tesis se observé la utilidad de
incluir sensores adicionales como guias laser, unidades inerciales, y codificadores
rotativos, para complementar el sistema de visién. Por ejemplo, los sensores laser
permiten conocer la distancia entre el robot y los objetos circundantes para rea-
lizar un seguimiento y evasién de obstaculos, una tarea crucial que complementa
el problema de navegacién visual. La evasién de obstaculos ha sido ampliamen-
te documentada como esencial en robdtica auténoma, mejorando la seguridad
y la eficiencia del movimiento en entornos dindmicos. Los sistemas inerciales
ayudan ayudan a determinar los cambios bruscos de elevacion y mantener el
vehiculo en una trayectoria adecuada sobre superficies no planas, estabilizando
la navegacion en terrenos irregulares. Ademds, los codificadores rotativos com-
plementan la estimacion de pose utilizando informacion histérica y temporal del
vehiculo en movimiento, mejorando asi la precisién en la navegacién continua y
proporcionando datos criticos para la correccién de trayectoria.

La inclusién de miiltiples sensores permite una fusién sensorial méas robusta,
que es crucial para la navegaciéon auténoma en entornos complejos. Esta fusion
de sensores mejora la redundancia y la confiabilidad del sistema, permitiendo al
robot definir trayectorias basandose en multiples fuentes de datos. La fusién de
datos ha sido explorada en diversas aplicaciones robdticas, mostrando cémo la
combinacion de diferentes tipos de sensores que puede superar las limitaciones
individuales de cada uno de ellos.
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El marco tedrico desarrollando en este trabajo de investigacién también tie-
ne aplicaciones en otras disciplinas como cirugia asistida por computadora, in-
genieria inversa, vigilancia, y control de calidad en lineas de produccién. Por
ejemplo, la realidad aumentada es una tecnologia que permite simular escena-
rios criticos que son de alto riesgo de practicar sin tener conocimientos previos.
En navegacién aéreas, un estudiante puede realizar multiples simulaciones antes
de realizar vuelos en condiciones reales. En medicina, los sistemas de simulacién
quirirgica permiten a los médicos practicar procedimientos complejos, minimi-
zando los riesgos asociados a errores durante cirugias reales. La realidad aumen-
tada también se utiliza en la formaciéon de personal en industrias como nuclear
y la petroquimica, donde los errores pueden tener consecuencias catastroéficas.

El método propuesto no solo mejora la precision de la localizacién del vehicu-
lo, sino también tiene el potencial de integrarse con sistemas de inteligencia
artificial. La combinacién de visién por computadora y aprendizaje profundo
ha demostrado ser efectiva en diversas aplicaciones de navegaciéon auténoma,
ofreciendo soluciones adaptativas que mejoran el rendimiento en tiempo real.
Ademas, el uso de técnicas de aprendizaje permite incrementar las capacidades
de navegacién a través de la evolucién del algoritmo que optimiza el rendimiento
en entornos dindmicos y desconocidos.

Los resultados experimentales obtenidos en este trabajo de tesis validaron
la utilidad del método de visién propuesto para tareas de navegacién auténo-
ma. Complementar el método con un sistema de aprendizaje automatico ofre-
ci6 una alternativa practica para la deteccién de pistas sin necesidad de pre-
entrenamiento, lo que representa una solucién prometedora para futuros desa-
rrollos en el campo de la robdética mévil.

En conclusion, este trabajo de investigacion abre nuevas oportunidades de
investigacion en robdtica mévil, visién por computadora y otras dreas relacio-
nadas, como la realidad aumentada y la robdtica industrial. La integraciéon de
sensores adicionales y técnicas de aprendizaje automatico mejora significativa-
mente la capacidad de los sistemas auténomos para navegar en entornos com-
plejos y dindmicos. La investigacion futura podria centrarse en la mejora de los
algoritmos de fusién sensorial y en la implementacién de redes neuronales mas
avanzadas para optimizar la toma de decisiones en tiempo real, expandiendo asi
las aplicaciones y la eficiencia de los robots auténomos.



Apéndice

Estimacion de homografias

Las homografias son de gran utilidad cuando se emplea una cdmara pinhole
y se desea relacionar los puntos del plano de la imagen (cdmara) o del plano
de diapositivas (proyector) con puntos de un plano de referencia en el espacio
tridimensional [20]. El sistema de transformacién de puntos se puede describir
como

p=H"GHpl], (A1)

donde p y p son puntos de correspondencia entre el plano de la imagen o diapo-
sitiva y el plano de referencia, respectivamente, G es la matriz de homografia, y
H[] es el operador de coordenadas homogéneas [20]. La homografia G se define
como una matriz de 3 X 3 y también puede representarse como

g11 g12 913 a1
G= |92 922 g3 | = g3 ], (A.2)
g31 932 933 g3

donde g¥', g y gl son las filas de la matriz G. Usando esta definicién, la
ecuacién (A.1) puede reescribirse como

g? QT,H[P] 1 =T
_ g1 _T _ a1 _T _ g1 Hlpl

Usando la ecuacién (A.3), se puede escribir un sistema de ecuaciones lineales
como
{931%/& + 932PyMa + Nﬂc:| _ {Q{H[p]} (A 4)
9310ty + g32pytty + 11y | |G3 Hpl|’ '
que se puede reescribir convenientemente colocando las incégnitas en el lado
derecho de la igualdad como

{MI] _ {H[p}Tgl] B [pxumg:n +pyuw932] (A5)
iy Hp|"Gy| | pattygst + pyiygse
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o, en forma matricial,

73

’H[p]T Og —Pxlz  —Pylx gs
: —pu, A6
0F  HpIT —papy —pymy] |gm| P (4.6)

g32
——
g

A

donde g es el vector de incognitas, y contiene los elementos de la matriz homo-
graffa. Observe que la ecuacién (A.6) corresponde al caso donde hay un punto
de correspondencia (u, p), obteniendo dos ecuaciones. Sin embargo, esto no es
suficiente para determinar el vector g, que contiene ocho incégnitas. Por lo tan-
to, es necesario al menos cuatro puntos de correspondencia para estimar una
matriz de homografia. Para el caso general, un sistema de ecuaciones matriciales
para n puntos de correspondencia se representa como

Ay 1251
Az K2
Azl g= | M3 (A.7)
An Ky,
A y

Este sistema se puede resolver utilizando el método de minimos cuadrados, de
modo que el vector g se puede calcular como

g=(A"A)TATY. (A.8)

En este trabajo de tesis, el método de estimacién de homografia descrito
se usO para diversas dreas, incluyendo calibraciéon de cdmaras, calibracién de
proyectores, y formacién de imégenes mosaico para la generacién dindmica de
imagenes usando un sistema multi-proyector.
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Deteccion de objetos

En este trabajo de investigacion, la deteccién de objetos a partir de iméagenes
fue una tarea que se desarroll6 empleando diferentes métodos. A continuacién se
describen cuatro enfoques evaluados durante este trabajo de tesis; en particular,
la deteccién de objetos empleando flujo éptico, deteccién por espacios de color,
filtros de correlacion, y redes neuronales convolucionales.

B.1. Flujo 6ptico

El flujo 6ptico refiere a los campos de velocidad de intensidad que provocan
los objetos en movimiento en una imagen. La importancia del analisis del flujo
optico se debe a su utilidad en aplicaciones de visién por computadora, pues-
to que permite detectar y obtener el movimiento de los objetos en una escena.
Este método se ha convertido en un linea de investigacion importante por su efi-
ciencia y utilidad en aplicaciones como segmentacién, estructura tridimensional,
estabilizacién, y compresién de video, entre otras [56,57].

La estimacion clasica del flujo dptico inicia definiendo una imagen E donde
su nivel de intensidad en el punto x,y en el instante de tiempo t, se representa
como

E(z,y,1). (B.1)

Esta intensidad permanece constante en un instante de tiempo ¢ cualesquiera;
es decir,
dE
— =0. B.2
o (B.2)

De igual manera, un punto en la imagen puede trasladarse a una cierta
distancia en direccién de los ejes en un determinado tiempo, como

E(x,y,t) = E(x + 03,y + 0y, t + 0¢), (B.3)
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(Ex, Ey)

\ >

Figura B.1: La velocidad u,v forma parte de la linea recta perpendicular al
vector de nivel de intensidad E,, E,,.

que podemos reescribir usando series de Taylor como

oF oF oF
E 1) = E(x,y,t) + 0p— + 0y— + 0 — B.4
donde € son los términos de orden superior. Después, despreciando los términos
de orden superior, dividiendo por d; y en el limite §; — 0 se obtiene la siguiente
ecuacion diferencial

8de+8Edy+8E B

dr dt Oy dt Ot
o, simplificando la notacion, llegamos a lo que se conoce como ecuacion lineal
del flujo dptico dada por

0, (B.5)

E,u+ Eyv+ E; =0, (B.6)

donde u y v son las velocidades del flujo en los ejes x e y, respectivamente.
Utilizando la ecuacién de la recta en el espacio u,v, se forma la figura B.1,
donde la velocidad se encuentra dentro de la linea recta y el vector del nivel de
intensidad (E,, E,) siempre permanece perpendicular.

En la ecuacién (B.6) se tienen dos incégnitas y una sola restriccién. Por
lo tanto, la ecuacién (B.6) no proporciona informacién suficiente para poder
calcular el flujo 6ptico de forma tnica. El método de Horn-Schunck agrega una
restriccién de la variacién de suavidad que toma en cuenta todos los pixeles [13].
Usando esta restriccién global se puede determinar el flujo 6ptico de cada pixel,
sin embargo, esto puede causar problema al andlisis de la deteccién debido
a que es sensible al ruido. Por otro lado, el método de Lucas-Kanade asume
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una restriccién local para determinar el flujo 6ptico que ofrece una robustez
relativamente alta en ambientes no controlados [14]. Estd restriccién asume un
movimiento constante de un espacio determinado.

Dado el criterio de minimos cuadrados, la ecuacién (B.6) para las velocidades
v = [u,v] en una pequena vecindad espacial 2 se reescribe como

> W2 (@)[Eyu+ By + E* =0, (B.7)
xe)

donde W (x) es una funcién ventana donde el centro de la vecindad tiene un
mayor peso que los que rodean. Desarrollando la ecuacién (B.7), se obtiene

We, - 0 E,, E
E, ... E. ]| , LM T .
Eyl Ey'n N : : v
0 ... Wy, E.. Ey,
5 (B.8)
5 5 We, 0
ol ] e m) =
< Jgn O Wmn’
y se puede simplificar como
ATW?Av = ATW?b, (B.9)

donde

A=[Ey +Ey,E;, +Eyy,...,Ee, + B, 17,
W = diag [W(wl)a W(m2)a ) W(wn)]v (BlO)
b=—[E,,FE,,...,E].

El flujo 6ptico v se calcula directamente utilizando la pseudoinversa de Moore-
Penrose [58] para encontrar la solucién de la ecuacién (B.10) como

v=[(ATWHT(ATWH] 1 ATWH)T AT 2. (B.11)

Para validar el método estudiado, se realizé una simulacién computacional
para observar el flujo 6ptico estimado y su robustez cuando las condiciones son
controladas. En esta simulacién se generan cuatro circulos de diferentes patrones
como objeto de interés. Los objetos de la escena se pueden manipular usando
transformaciones geométrica como traslacién y rotacién. Cada imagen genera-
da es procesada para determinar el flujo éptico usando una ventana espacial
de 20 x 20. en En la figura B.2, se observan los resultados obtenidos, donde
su pudo verificar que el proceso de estimacion de flujo 6ptico se implementd
correctamente.

En este trabajo se realizé una comparacién entre el método de Horn-Schunck
y Lucas-Kanade. Ambos son métodos para determinar el flujo 6ptico. Por un
lado, el enfoque de Horn-Schunck es global debido a que utiliza el criterio de
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Figura B.2: Simulacién para determinar el flujo éptico en una escena con objetos
en movimiento.

Figura B.3: Diferentes visualizaciones del flujo éptico. (a)-(c) Son resultados
obtenidos mediante el método de Lucas-Kanade. Por otro lado, (d)-(f) son re-
sultados obtenidos del método de Horn-Schunck.
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suavidad en toda la imagen. Por otro lado, el método de Lucas-Kanade es un
enfoque local ya que asume que la velocidad es constante solo dentro de una
vecindad espacial. Para este experimento, se utiliza un video para obtener una
secuencia de imagenes que serd procesada usando ambos algoritmos. Los resul-
tados del flujo éptico se pueden observar en la figura B.3. Se utiliz6 el método de
Lucas-Kanade para obtener los resultados de la figura B.3(a)-(c). Como pardme-
tro de entrada al algoritmo se utilizé una vecindad espacial de 15 x 15 para 200
caracteristicas. Asimismo, la figura B.3(d)-(f) son los resultados obtenidos por
el método de Horn-Schunck usando como pardmetro de entrada una ventana
de tamano 3 x 3 para estimar la suavidad. Dado los resultados obtenidos, se
puede observar que el método local procesa solamente ciertos puntos de interés,
mientras el método global procesa todos los pixeles de la imagen. El método
global implica bastante procesamiento computacional y susceptibilidad al ruido
por resultados adicionales que no sean de interés.

B.2. Espacio de colores

La deteccién de color mediante el espacio HSV (por sus siglas en inglés
Hue, Saturation, Value — Matiz, Saturacién, Valor) es una técnica utilizada en
procesamiento de imagenes y visién por computadora. El espacio de color HSV
se descompone la informacién en tres componentes descritas a continuacién. La

Figura B.4: Deteccién de colores mediante el uso de méscaras. (a) Imagen de
entrada. (b) Méscara binaria. (c) Imagen de salida. (d)-(f) Méscaras binarias
de los canales del espacio HSV.
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(b)

Figura B.5: Detector de objetos mediante la informacién obtenida por los colo-
res.

matiz representa el tipo de color, y se mide en grados de 0 a 360. Por ejemplo, el
grado 0 representa el color rojo, el grado 120 representa el color verde, y el grado
240 representa el color azul. Por otro lado, la saturacién indica la percepcion
de la pureza en colorimetria, que varia entre los valores de 0 a 100 %. Un valor
del 0% agrega una tonalidad de gris, mientras que 100 % es el color més puro.
Por tltimo, el valor es conocido como brillo, tiene valores entre 0 a 100 % donde
el valor minimo equivale a colores oscuros y el valor maximo es el color mas
brillante equivalente al blanco.

El proceso de deteccion de objeto mediante el espacio de colores es lo siguien-
te. Primero, se selecciona un color para generar tres mascaras binarias mediante
un valor constante. Cada méascara pertenece a un componente del espacio HSV.
Después, se realiza una operacion logica AND con las tres mdascaras para obte-
ner una mascara binaria en el espacio RGB (por sus siglas en inglés Red, Green,
Blue — Rojo, Verde, Azul). Finalmente, se aplica el filtro binario a la imagen de
entrada para obtener el objeto de interés. En la figura B.4 se puede observar
como ejemplo un experimento para la deteccién del color amarillo. Finalmen-
te, la posicién del objeto se obtiene determinando el centroide de los puntos
detectados como se muestra en la figura B.5.

B.3. Filtros de correlacion

El filtro de correlacién construido por la minima de la suma del error al
cuadrado (del inglés minimum output sum of squared error MOSSE) es una
técnica avanzada utilizada en vision por computadora para tareas de rastreo
de objetos [55,59,60]. El filtro MOSSE se basa en la optimizacién de un filtro
de correlaciéon para minimizar el error cuadratico medio entre su salida y una
imagen del objeto deseado. Es decir, el objetivo de este método es determinar
un filtro H que, al correlacionarse con una imagen I, produzca una respuesta G
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(a) (b) _ (©

Figura B.6: Deteccién de un robot movil terrestre usando filtros de correlacion.

similar a una funcién delta centrada en la ubicacion del objeto. Por lo tanto, es
necesario minimizar el error del filtro usando multiples imagenes del objetivos
como

ming Y |H - I; - Gy, (B.12)

donde I; son las imdgenes de entrenamiento y G; es la funcién delta correspon-
diente. Por lo tanto, se propone generar el filtro de correlacién de la siguiente
manera. Primero, se selecciona el objeto de interés en la escena. A continuacién,
se genera un filtro mediante el entrenamiento con transformaciones geométricas
del objeto seleccionado, utilizando el criterio de la ecuacién (B.12). La imagen
entrante se transforma al espacio de Fourier y se aplica una convolucién con
el filtro. Finalmente, se determina la posicién del objeto de interés buscando el
pico de intensidad maxima en el resultado de la convolucién. En la Figura B.6
se pueden observar los resultados de la deteccién de un robot mévil utilizando
filtros de correlacion.

B.4. Redes neuronales convolucionales

La red neuronal convolucional ha demostrado ser altamente eficaz en diversas
tareas de visién por computadora, incluyendo la deteccién de objetos [61-63].
Las redes neuronales profundas abordan el problema de la degradacién, en el
cual un aumento en el nimero de capas puede resultar en un mayor error y una
disminucién en la precision del entrenamiento. Para mitigar este problema, se
emplean bloques residuales que permiten el entrenamiento de redes profundas
sin experimentar inconvenientes como el desvanecimiento del gradiente.

Para la deteccién de objetos, se utiliza la arquitectura Redes Residuales 18
(ResNet-18), que consta de 18 capas organizadas en un conjunto de bloques
residuales, como se muestra en la figura B.7. Cada bloque incluye dos capas
convolucionales seguidas por una conexion de atajo que omite estas dos capas,
como se muestra en la figura B.8. Esta conexion facilita la propagacién directa
del gradiente a través de la red, permitiendo el entrenamiento eficiente de las
capas mas profundas.

Entre las ventajas de utilizar esta arquitectura se destacan su facilidad de
implementacion, adecuacion para aplicaciones en tiempo real y dispositivos con
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Figura B.7: La arquitectura de la red residual de 18 capas estd organizada en
un conjunto de bloques residuales, los cuales permiten omitir dos capas convo-

lucionales. La ltima capa es crucial, ya que finaliza el proceso de aprendizaje
y produce los resultados.

Convolucién

f)

®
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Figura B.8: Bloque de aprendizaje residual.
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recursos limitados. La profundidad moderada de una ResNet-18 le permite ge-
neralizar bien en tareas de visién por computadora, manteniendo un equilibrio
entre precision y eficiencia. Debido a los bloques residuales, 1la ResNet-18 puede
ser entrenada de manera eficiente, evitando problemas comunes en redes pro-
fundas, como el desvanecimiento del gradiente.
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